15 research outputs found

    Exploring the limits of the geometric copolymerization model

    Get PDF
    The geometric copolymerization model is a recently introduced statistical Markov chain model. Here, we investigate its practicality. First, several approaches to identify the optimal model parameters from observed copolymer fingerprints are evaluated using Monte Carlo simulated data. Directly optimizing the parameters is robust against noise but has impractically long running times. A compromise between robustness and running time is found by exploiting the relationship between monomer concentrations calculated by ordinary differential equations and the geometric model. Second, we investigate the applicability of the model to copolymerizations beyond living polymerization and show that the model is useful for copolymerizations involving termination and depropagation reactions

    Computational mass spectrometry of linear binary synthetic copolymers

    Get PDF
    The accurate characterization of synthetic polymer sequences represents a major challenge in polymer science. We present a computational approach to quantify the abundances of all sequences in a measured copolymer sample. The first step in our workflow is transforming mass spectra into copolymer fingerprints. Our method is based on linear programming and is capable of automatically resolving overlapping isotopes and isobaric ions. Peak intensities in matrix-assisted laser desorption/ionization spectra are influenced by mass and composition-dependent ionization. We demonstrate a method to correct the abundance bias. The second step in our workflow is interpreting the computed copolymer fingerprints using new Markov chain models for copolymerization kinetics: The Bernoulli and Geometric models. In contrast to previous Markov chain approaches to copolymerization, both models take variable chain lengths and time-dependent monomer probabilities into account and allow computing sequence likelihoods and copolymer fingerprints. We find that computing the models is fast and memory efficient. Then, we focus on the Geometric copolymerization model with reactivity parameters. First, several approaches to identify the optimal model parameters from observed fingerprints are evaluated using Monte-Carlo simulated data. A compromise between robustness and running time is found by exploiting the relationship between ordinary differential equations and the Geometric model. Second, we show that the model is also useful for copolymerizations involving termination and depropagation reactions. We then compute several copolymer statistics and compared them to the statistics obtained from Monte-Carlo simulations. Last but not least, we present our software framework COCONUT, which implements all algorithms presented in this thesis. Our software is freely available and provides a graphical user interface. COCONUT represents a step towards comprehensive computational support in polymer science

    Facing current challenges in (supra-)macromolecular science : a high-throughput approach

    Get PDF

    Olefin copolymerization via controlled radical polymerization : an insight

    Get PDF

    Copolymers of amorphous polystyrene and crystallizable hydrogen bonding units

    Get PDF
    Copolymers are macromolecules composed of linear or non-linear arrangements of chemically different polymeric chain parts. In most cases the different constituting blocks are incompatible, giving rise to a rich variety of well-defined self-assembled structures both in bulk and in selective solvents. These self-assembled structures may form the basis for applications ranging from thermoplastic elastomers to information storage, drug delivery and photonic materials. As a result, there is a continuous investigation of the self-assembly process as well as of the response of these materials to external stimuli. Therefore, it is not surprising that these materials play an important role in contemporary macromolecular science, covering the full spectrum of polymer chemistry, polymer physics and applications. In the present thesis, copolymers of amorphous polystyrene and aliphatic or aromatic polyamide units, having various structures (diblock, multiblock and graft copolymers) were synthesized and their structure-properties relationships were investigated. These copolymers were applied in order to verify a so-called "sticky-blocks" concept, which aims at designing materials with improved processabilty as compared to high molecular weight industrially used polystyrenes. The principle of "sticky-blocks" lies in decreasing the molecular weight of polystyrene (thus improving melt flow) and compensating for the loss of entanglements per individual macromolecule, by creating hydrogen-bonded, semi-crystalline polymeric networks, which would have similar properties as the high molecular weight homo-polystyrenes. Polyamides we chosen to function as "sticky-blocks" due to their relatively low melt viscosity (200-400 Pas) and optimal mechanical and thermal properties at relatively low molecular weights (20,000-30,000 g/mol), inherent in the presence of relatively strong hydrogen-bond interactions. We demonstrated in this thesis that, by using aromatic polyamides (T6T6T) of (reported) high crystallinity and stability of the crystalline phase, segmented multiblock copolymers of polystyrene and T6T6T with molar masses up to around 40,000 g/mol can be relatively easily prepared. However, due to the very high incompatibility of the two phases, the synthesized multiblock copolymers displayed rather weak crystals and premature phase separation (presumed via liquid-liquid demixing), and the desired semi-crystalline network structure could not be obtained. Nevertheless, the thermal stability and moduli improved considerably, not only compared to neat PS of similar molecular mass (50,000 g/mol), but also compared to commercial PS with Mw Ëś 200,000 g/mol. Aliphatic polyamides (polyamide-6) were also used as "sticky blocks" in the preparation of diblock and graft copolymers. The diblock copolymers of polystyrene and polyamide-6 had a maximum molecular weight of 20,000 g/mol and were prepared via anionic polymerization of e-caprolactam, starting from PS end-functionalized macroinitiators. These semi-crystalline materials were presumed to be well-flowing (lack of entanglements), but were too brittle to possess measurable mechanical properties. Therefore, for achieving less brittle copolymers, graft copolymers of higher molecular weight (Mn up to 100,000 g/mol) were made via combined ATRP and reactive processing. The graft copolymers seemed the most promising materials to be used for achieving the goal of this thesis. As revealed by thermo-mechanical analyses (DMTA) and rheology, relatively stable crystalline polymeric networks can be formed. Moreover, the graft copolymers had a lower viscosity in the melt under injection moulding shear conditions, while maintaining and even improving some properties of commercial PS. Summarizing, by using this approach, the goal set for decreasing the molecular weight of the PS (thereby improving its flow properties) and compensating for the loss of entanglements per PS macromolecule by introducing "sticky blocks", can most probably be achieved when some further improvements suggested in this thesis can be realized
    corecore