205,039 research outputs found
Decentralized Constraint Satisfaction
We show that several important resource allocation problems in wireless
networks fit within the common framework of Constraint Satisfaction Problems
(CSPs). Inspired by the requirements of these applications, where variables are
located at distinct network devices that may not be able to communicate but may
interfere, we define natural criteria that a CSP solver must possess in order
to be practical. We term these algorithms decentralized CSP solvers. The best
known CSP solvers were designed for centralized problems and do not meet these
criteria. We introduce a stochastic decentralized CSP solver and prove that it
will find a solution in almost surely finite time, should one exist, also
showing it has many practically desirable properties. We benchmark the
algorithm's performance on a well-studied class of CSPs, random k-SAT,
illustrating that the time the algorithm takes to find a satisfying assignment
is competitive with stochastic centralized solvers on problems with order a
thousand variables despite its decentralized nature. We demonstrate the
solver's practical utility for the problems that motivated its introduction by
using it to find a non-interfering channel allocation for a network formed from
data from downtown Manhattan
Distance Constraint Satisfaction Problems
We study the complexity of constraint satisfaction problems for templates
that are first-order definable in , the integers with
the successor relation. Assuming a widely believed conjecture from finite
domain constraint satisfaction (we require the tractability conjecture by
Bulatov, Jeavons and Krokhin in the special case of transitive finite
templates), we provide a full classification for the case that Gamma is locally
finite (i.e., the Gaifman graph of has finite degree). We show that
one of the following is true: The structure Gamma is homomorphically equivalent
to a structure with a d-modular maximum or minimum polymorphism and
can be solved in polynomial time, or is
homomorphically equivalent to a finite transitive structure, or
is NP-complete.Comment: 35 pages, 2 figure
Random Constraint Satisfaction Problems
Random instances of constraint satisfaction problems such as k-SAT provide
challenging benchmarks. If there are m constraints over n variables there is
typically a large range of densities r=m/n where solutions are known to exist
with probability close to one due to non-constructive arguments. However, no
algorithms are known to find solutions efficiently with a non-vanishing
probability at even much lower densities. This fact appears to be related to a
phase transition in the set of all solutions. The goal of this extended
abstract is to provide a perspective on this phenomenon, and on the
computational challenge that it poses
Tropically convex constraint satisfaction
A semilinear relation S is max-closed if it is preserved by taking the
componentwise maximum. The constraint satisfaction problem for max-closed
semilinear constraints is at least as hard as determining the winner in Mean
Payoff Games, a notorious problem of open computational complexity. Mean Payoff
Games are known to be in the intersection of NP and co-NP, which is not known
for max-closed semilinear constraints. Semilinear relations that are max-closed
and additionally closed under translations have been called tropically convex
in the literature. One of our main results is a new duality for open tropically
convex relations, which puts the CSP for tropically convex semilinaer
constraints in general into NP intersected co-NP. This extends the
corresponding complexity result for scheduling under and-or precedence
constraints, or equivalently the max-atoms problem. To this end, we present a
characterization of max-closed semilinear relations in terms of syntactically
restricted first-order logic, and another characterization in terms of a finite
set of relations L that allow primitive positive definitions of all other
relations in the class. We also present a subclass of max-closed constraints
where the CSP is in P; this class generalizes the class of max-closed
constraints over finite domains, and the feasibility problem for max-closed
linear inequalities. Finally, we show that the class of max-closed semilinear
constraints is maximal in the sense that as soon as a single relation that is
not max-closed is added to L, the CSP becomes NP-hard.Comment: 29 pages, 2 figure
Robust explicit MPC design under finite precision arithmetic
We propose a design methodology for explicit Model Predictive Control (MPC) that guarantees hard constraint satisfaction in the presence of finite precision arithmetic errors. The implementation of complex digital control techniques, like MPC, is becoming increasingly adopted in embedded systems, where reduced precision computation techniques are embraced to achieve fast execution and low power consumption. However, in a low precision implementation, constraint satisfaction is not guaranteed if infinite precision is assumed during the algorithm design. To enforce constraint satisfaction under numerical errors, we use forward error analysis to compute an error bound on the output of the embedded controller. We treat this error as a state disturbance and use this to inform the design of a constraint-tightening robust controller. Benchmarks with a classical control problem, namely an inverted pendulum, show how it is possible to guarantee, by design, constraint satisfaction for embedded systems featuring low precision, fixed-point computations
- …