205,039 research outputs found

    Decentralized Constraint Satisfaction

    Get PDF
    We show that several important resource allocation problems in wireless networks fit within the common framework of Constraint Satisfaction Problems (CSPs). Inspired by the requirements of these applications, where variables are located at distinct network devices that may not be able to communicate but may interfere, we define natural criteria that a CSP solver must possess in order to be practical. We term these algorithms decentralized CSP solvers. The best known CSP solvers were designed for centralized problems and do not meet these criteria. We introduce a stochastic decentralized CSP solver and prove that it will find a solution in almost surely finite time, should one exist, also showing it has many practically desirable properties. We benchmark the algorithm's performance on a well-studied class of CSPs, random k-SAT, illustrating that the time the algorithm takes to find a satisfying assignment is competitive with stochastic centralized solvers on problems with order a thousand variables despite its decentralized nature. We demonstrate the solver's practical utility for the problems that motivated its introduction by using it to find a non-interfering channel allocation for a network formed from data from downtown Manhattan

    Distance Constraint Satisfaction Problems

    Full text link
    We study the complexity of constraint satisfaction problems for templates Γ\Gamma that are first-order definable in (Z;succ)(\Bbb Z; succ), the integers with the successor relation. Assuming a widely believed conjecture from finite domain constraint satisfaction (we require the tractability conjecture by Bulatov, Jeavons and Krokhin in the special case of transitive finite templates), we provide a full classification for the case that Gamma is locally finite (i.e., the Gaifman graph of Γ\Gamma has finite degree). We show that one of the following is true: The structure Gamma is homomorphically equivalent to a structure with a d-modular maximum or minimum polymorphism and CSP(Γ)\mathrm{CSP}(\Gamma) can be solved in polynomial time, or Γ\Gamma is homomorphically equivalent to a finite transitive structure, or CSP(Γ)\mathrm{CSP}(\Gamma) is NP-complete.Comment: 35 pages, 2 figure

    Random Constraint Satisfaction Problems

    Full text link
    Random instances of constraint satisfaction problems such as k-SAT provide challenging benchmarks. If there are m constraints over n variables there is typically a large range of densities r=m/n where solutions are known to exist with probability close to one due to non-constructive arguments. However, no algorithms are known to find solutions efficiently with a non-vanishing probability at even much lower densities. This fact appears to be related to a phase transition in the set of all solutions. The goal of this extended abstract is to provide a perspective on this phenomenon, and on the computational challenge that it poses

    Tropically convex constraint satisfaction

    Full text link
    A semilinear relation S is max-closed if it is preserved by taking the componentwise maximum. The constraint satisfaction problem for max-closed semilinear constraints is at least as hard as determining the winner in Mean Payoff Games, a notorious problem of open computational complexity. Mean Payoff Games are known to be in the intersection of NP and co-NP, which is not known for max-closed semilinear constraints. Semilinear relations that are max-closed and additionally closed under translations have been called tropically convex in the literature. One of our main results is a new duality for open tropically convex relations, which puts the CSP for tropically convex semilinaer constraints in general into NP intersected co-NP. This extends the corresponding complexity result for scheduling under and-or precedence constraints, or equivalently the max-atoms problem. To this end, we present a characterization of max-closed semilinear relations in terms of syntactically restricted first-order logic, and another characterization in terms of a finite set of relations L that allow primitive positive definitions of all other relations in the class. We also present a subclass of max-closed constraints where the CSP is in P; this class generalizes the class of max-closed constraints over finite domains, and the feasibility problem for max-closed linear inequalities. Finally, we show that the class of max-closed semilinear constraints is maximal in the sense that as soon as a single relation that is not max-closed is added to L, the CSP becomes NP-hard.Comment: 29 pages, 2 figure

    Robust explicit MPC design under finite precision arithmetic

    Get PDF
    We propose a design methodology for explicit Model Predictive Control (MPC) that guarantees hard constraint satisfaction in the presence of finite precision arithmetic errors. The implementation of complex digital control techniques, like MPC, is becoming increasingly adopted in embedded systems, where reduced precision computation techniques are embraced to achieve fast execution and low power consumption. However, in a low precision implementation, constraint satisfaction is not guaranteed if infinite precision is assumed during the algorithm design. To enforce constraint satisfaction under numerical errors, we use forward error analysis to compute an error bound on the output of the embedded controller. We treat this error as a state disturbance and use this to inform the design of a constraint-tightening robust controller. Benchmarks with a classical control problem, namely an inverted pendulum, show how it is possible to guarantee, by design, constraint satisfaction for embedded systems featuring low precision, fixed-point computations
    • …
    corecore