1,440,817 research outputs found

    Conservation, Creation, and Evolution: Revising the Darwinian Project

    Get PDF
    There is hardly anything more central to our universe than conservation. Many scientific fields and disciplines view the law of conservation as one of the most fundamental universal laws. The Darwinian model pivots the process of evolution on variability, reproduction, and natural selection. Conservation plays a marginal role in this model and is not really universal, as the model allows exceptions to conservation, i.e. non-conservation, to play an equally important role in evolution. This anomalous role of conservation in the Darwinian model raises questions: What is the reason for this anomaly? Is conservation really universal, as we tend to believe or is it not, as the Darwinian model suggests? This contribution proposes a new model of evolution that focuses on levels of organization, rather than of species, organisms, or populations. It argues that conservation is central to evolution. Not only does this new model restores the universal status of conservation but it also makes possible to resolve some outstanding problems and controversies that continue to plague the Darwinian model. The article tries to advance the broad Darwinian project that seeks to explain the process of evolution as a product of the spontaneous processes in nature

    Is there a true Model-D critical dynamics?

    Get PDF
    We show that non-locality in the conservation of both the order parameter and a noncritical density (model D dynamics) leads to new fixed points for critical dynamics. Depending upon the parameters characterizing the non-locality in the two fields, we find four regions: (i) model-A like where both the conservations are irrelevant (ii) model B-like with the conservation in the order parameter field relevant and the conservation in the coupling field irrelevant (iii) model C like where the conservation in the order parameter field is irrelevant but the conservation in the coupling field is relevant, and (iv) model D-like where both the conservations are relevant. While the first three behaviours are already known in dynamical critical phenomena, the last one is a novel phenomena due entirely to the non-locality in the two fields.Comment: 4 pages revtex4; to appear in Journal of Physics A Letter

    Statistical coalescence model with exact charm conservation

    Get PDF
    The statistical coalescence model for the production of open and hidden charm is considered within the canonical ensemble formulation. The data for the J/psi multiplicity in Pb+Pb collisions at 158 A·GeV are used for the model prediction of the open charm yield which has not yet been measured in these reactions

    A Genetic Algorithm solver for pest management control in Island systems

    Get PDF
    Island conservation management is a truly multidisciplinary problem that requires considerable knowledge of the characteristics of the ecosystem, species and their interactions. Nevertheless, this can be translated into an optimisation problem. Essentially, within a limited budget, a manager needs to select the conservation actions according to expected payoffs (in terms of protecting or restoring desired species) versus cost (the amount of resources/money) required for the actions. This paper presents the problem in terms of a knapsack formulation and develops optimisation techniques to solve it. From this, decision-support software is being developed, tailored to meet the needs of pest control on islands for conservation managers. The solver uses a Genetic Algorithm and incorporates a simplified model of the problem. The solver derives strategies that reduce the number of threats, allowing the preservation of desired species. However, the problem model needs further refinement to derive truly realistic options for conservation managers

    Conservation laws for strings in the Abelian Sandpile Model

    Full text link
    The Abelian Sandpile generates complex and beautiful patterns and seems to display allometry. On the plane, beyond patches, patterns periodic in both dimensions, we remark the presence of structures periodic in one dimension, that we call strings. We classify completely their constituents in terms of their principal periodic vector k, that we call momentum. We derive a simple relation between the momentum of a string and its density of particles, E, which is reminiscent of a dispersion relation, E=k^2. Strings interact: they can merge and split and within these processes momentum is conserved. We reveal the role of the modular group SL(2,Z) behind these laws.Comment: 4 pages, 4 figures in colo

    A solvable non-conservative model of Self-Organized Criticality

    Full text link
    We present the first solvable non-conservative sandpile-like critical model of Self-Organized Criticality (SOC), and thereby substantiate the suggestion by Vespignani and Zapperi [A. Vespignani and S. Zapperi, Phys. Rev. E 57, 6345 (1998)] that a lack of conservation in the microscopic dynamics of an SOC-model can be compensated by introducing an external drive and thereby re-establishing criticality. The model shown is critical for all values of the conservation parameter. The analytical derivation follows the lines of Broeker and Grassberger [H.-M. Broeker and P. Grassberger, Phys. Rev. E 56, 3944 (1997)] and is supported by numerical simulation. In the limit of vanishing conservation the Random Neighbor Forest Fire Model (R-FFM) is recovered.Comment: 4 pages in RevTeX format (2 Figures) submitted to PR

    Measuring microsatellite conservation in mammalian evolution with a phylogenetic birth-death model.

    Get PDF
    Microsatellites make up ∼3% of the human genome, and there is increasing evidence that some microsatellites can have important functions and can be conserved by selection. To investigate this conservation, we performed a genome-wide analysis of human microsatellites and measured their conservation using a binary character birth--death model on a mammalian phylogeny. Using a maximum likelihood method to estimate birth and death rates for different types of microsatellites, we show that the rates at which microsatellites are gained and lost in mammals depend on their sequence composition, length, and position in the genome. Additionally, we use a mixture model to account for unequal death rates among microsatellites across the human genome. We use this model to assign a probability-based conservation score to each microsatellite. We found that microsatellites near the transcription start sites of genes are often highly conserved, and that distance from a microsatellite to the nearest transcription start site is a good predictor of the microsatellite conservation score. An analysis of gene ontology terms for genes that contain microsatellites near their transcription start site reveals that regulatory genes involved in growth and development are highly enriched with conserved microsatellites

    Economics of soil and water conservation

    Get PDF
    The Ethiopian highlands, inhabited by the vast majority of the Ethiopian human and livestock populations, are under continuous threat from soil erosion. Land degradation induced by soil erosion is considered to be among the major factors responsible for the recurrent malnutrition and famine problems in Ethiopia. Conservation efforts during recent decades have succeeded neither in triggering voluntary adoption of conservation practices nor in mitigating soil erosion problems. The purpose of this thesis is, therefore, to understand the socio-economic aspects underlying soil and water conservation decisions in the context of subsistence farmers in the Eastern Highlands of Ethiopia. In articles I, III, and IV, the farmers’ decision problem is modeled as a utility maximization problem, and econometric models are used to link the statistical model of observed data and the economic model. Stochastic dominance criteria are used, in article I, to determine whether adoption of a conservation practice results in higher expected grain yield and income and/or reduced variability. Limited dependent variable econometric models are used in articles III and IV in order to determine factors that influence farmers’ decisions on soil and water conservation, and their preference for types of development intervention. In article II, the decision problem is modeled as an intertemporal net benefit maximization problem, and a dynamic programming optimization model is applied to determine the optimal path of investment in soil and water conservation. Findings in article I suggest that conservation results in higher expected grain yield and income, but does not support the hypothesis that conservation unambiguously results in less variability than no-conservation. In article II, it is shown that the optimal path of investment in soil and water conservation depends on the discount rate and grain prices. The results also suggest that erosive agricultural practices yield higher return in the short-term, whereas conservation yields a higher and sustainable return in the long-term. The need to design incentive mechanisms that encourage farmers to have a longer planning horizon are among important suggestions proposed in articles I and II. Results, in article III, suggest that specific physical conditions of plots and socioeconomic characteristics of farm households influence the soil and water conservation decision behavior of farmers. Article IV suggests that the perceived priority of farmers with regard to agricultural problems and socio-economic characteristics, determines their preference for the type of development intervention. The results also suggest that there exists a complementarity between different interventions and hence a need to address them simultaneously to ensure a higher return from interventions. An important lesson to be drawn from articles III and IV is that differences in farming conditions and complementarities between policy programs need to be noted in any intervention program
    corecore