2,621,428 research outputs found
Thomas Merton and the Monastic Vision
Author: Cunningham, Lawrence S. Title: Thomas Merton and the monastic vision xii. Publisher: Grand Rapids: Eerdmans, 1999. Series: Library of religious biography
Constrained Consensus
We present distributed algorithms that can be used by multiple agents to
align their estimates with a particular value over a network with time-varying
connectivity. Our framework is general in that this value can represent a
consensus value among multiple agents or an optimal solution of an optimization
problem, where the global objective function is a combination of local agent
objective functions. Our main focus is on constrained problems where the
estimate of each agent is restricted to lie in a different constraint set.
To highlight the effects of constraints, we first consider a constrained
consensus problem and present a distributed ``projected consensus algorithm''
in which agents combine their local averaging operation with projection on
their individual constraint sets. This algorithm can be viewed as a version of
an alternating projection method with weights that are varying over time and
across agents. We establish convergence and convergence rate results for the
projected consensus algorithm. We next study a constrained optimization problem
for optimizing the sum of local objective functions of the agents subject to
the intersection of their local constraint sets. We present a distributed
``projected subgradient algorithm'' which involves each agent performing a
local averaging operation, taking a subgradient step to minimize its own
objective function, and projecting on its constraint set. We show that, with an
appropriately selected stepsize rule, the agent estimates generated by this
algorithm converge to the same optimal solution for the cases when the weights
are constant and equal, and when the weights are time-varying but all agents
have the same constraint set.Comment: 35 pages. Included additional results, removed two subsections, added
references, fixed typo
Asynchronous Convex Consensus in the Presence of Crash Faults
This paper defines a new consensus problem, convex consensus. Similar to
vector consensus [13, 20, 19], the input at each process is a d-dimensional
vector of reals (or, equivalently, a point in the d-dimensional Euclidean
space). However, for convex consensus, the output at each process is a convex
polytope contained within the convex hull of the inputs at the fault-free
processes. We explore the convex consensus problem under crash faults with
incorrect inputs, and present an asynchronous approximate convex consensus
algorithm with optimal fault tolerance that reaches consensus on an optimal
output polytope. Convex consensus can be used to solve other related problems.
For instance, a solution for convex consensus trivially yields a solution for
vector consensus. More importantly, convex consensus can potentially be used to
solve other more interesting problems, such as convex function optimization [5,
4].Comment: A version of this work is published in PODC 201
Multilabel Consensus Classification
In the era of big data, a large amount of noisy and incomplete data can be
collected from multiple sources for prediction tasks. Combining multiple models
or data sources helps to counteract the effects of low data quality and the
bias of any single model or data source, and thus can improve the robustness
and the performance of predictive models. Out of privacy, storage and bandwidth
considerations, in certain circumstances one has to combine the predictions
from multiple models or data sources to obtain the final predictions without
accessing the raw data. Consensus-based prediction combination algorithms are
effective for such situations. However, current research on prediction
combination focuses on the single label setting, where an instance can have one
and only one label. Nonetheless, data nowadays are usually multilabeled, such
that more than one label have to be predicted at the same time. Direct
applications of existing prediction combination methods to multilabel settings
can lead to degenerated performance. In this paper, we address the challenges
of combining predictions from multiple multilabel classifiers and propose two
novel algorithms, MLCM-r (MultiLabel Consensus Maximization for ranking) and
MLCM-a (MLCM for microAUC). These algorithms can capture label correlations
that are common in multilabel classifications, and optimize corresponding
performance metrics. Experimental results on popular multilabel classification
tasks verify the theoretical analysis and effectiveness of the proposed
methods
Texts for preaching: a lectionary commentary based on the NRSV, year B
Reviewed Book: Brueggemann, Walter. Texts for preaching: a lectionary commentary based on the NRSV, year B. Louisville, Ky: Westminster/John Knox Pr, 1993
Adult Children of Alcoholics: Ministers and the Ministries
Reviewed Book: Callahan, Rachel and Rea McDonnell. Adult Children of Alcoholics: Ministers and the Ministries. New York: Paulist Press, 199
Consensus Propagation
We propose consensus propagation, an asynchronous distributed protocol for
averaging numbers across a network. We establish convergence, characterize the
convergence rate for regular graphs, and demonstrate that the protocol exhibits
better scaling properties than pairwise averaging, an alternative that has
received much recent attention. Consensus propagation can be viewed as a
special case of belief propagation, and our results contribute to the belief
propagation literature. In particular, beyond singly-connected graphs, there
are very few classes of relevant problems for which belief propagation is known
to converge.Comment: journal versio
Hindu-Christian Dialogue: Perspectives and Encounters
Reviewed Book: Coward, Harold (ed). Hindu-Christian Dialogue: Perspectives and Encounters. Maryknoll, New York: Orbis Books, 198
- …
