2,631,656 research outputs found

    Consensus Propagation

    Full text link
    We propose consensus propagation, an asynchronous distributed protocol for averaging numbers across a network. We establish convergence, characterize the convergence rate for regular graphs, and demonstrate that the protocol exhibits better scaling properties than pairwise averaging, an alternative that has received much recent attention. Consensus propagation can be viewed as a special case of belief propagation, and our results contribute to the belief propagation literature. In particular, beyond singly-connected graphs, there are very few classes of relevant problems for which belief propagation is known to converge.Comment: journal versio

    Constrained Consensus

    Full text link
    We present distributed algorithms that can be used by multiple agents to align their estimates with a particular value over a network with time-varying connectivity. Our framework is general in that this value can represent a consensus value among multiple agents or an optimal solution of an optimization problem, where the global objective function is a combination of local agent objective functions. Our main focus is on constrained problems where the estimate of each agent is restricted to lie in a different constraint set. To highlight the effects of constraints, we first consider a constrained consensus problem and present a distributed ``projected consensus algorithm'' in which agents combine their local averaging operation with projection on their individual constraint sets. This algorithm can be viewed as a version of an alternating projection method with weights that are varying over time and across agents. We establish convergence and convergence rate results for the projected consensus algorithm. We next study a constrained optimization problem for optimizing the sum of local objective functions of the agents subject to the intersection of their local constraint sets. We present a distributed ``projected subgradient algorithm'' which involves each agent performing a local averaging operation, taking a subgradient step to minimize its own objective function, and projecting on its constraint set. We show that, with an appropriately selected stepsize rule, the agent estimates generated by this algorithm converge to the same optimal solution for the cases when the weights are constant and equal, and when the weights are time-varying but all agents have the same constraint set.Comment: 35 pages. Included additional results, removed two subsections, added references, fixed typo

    Lutheran Unity and Union in Canada (Part 1)

    Get PDF

    Thomas Merton and the Monastic Vision

    Get PDF
    Author: Cunningham, Lawrence S. Title: Thomas Merton and the monastic vision xii. Publisher: Grand Rapids: Eerdmans, 1999. Series: Library of religious biography

    Asynchronous Convex Consensus in the Presence of Crash Faults

    Full text link
    This paper defines a new consensus problem, convex consensus. Similar to vector consensus [13, 20, 19], the input at each process is a d-dimensional vector of reals (or, equivalently, a point in the d-dimensional Euclidean space). However, for convex consensus, the output at each process is a convex polytope contained within the convex hull of the inputs at the fault-free processes. We explore the convex consensus problem under crash faults with incorrect inputs, and present an asynchronous approximate convex consensus algorithm with optimal fault tolerance that reaches consensus on an optimal output polytope. Convex consensus can be used to solve other related problems. For instance, a solution for convex consensus trivially yields a solution for vector consensus. More importantly, convex consensus can potentially be used to solve other more interesting problems, such as convex function optimization [5, 4].Comment: A version of this work is published in PODC 201

    Two Kinds of Love: Martin Luther’s Religious World

    Get PDF
    Title: Two kinds of love : Martin Luther\u27s religious world Author: Tuomo Mannermaa; Kirsi Irmeli Stjerna Publisher: Minneapolis, Minn: Fortress Press, 2010. ISBN: 978080069707

    Sin As Addiction

    Get PDF
    Reviewed Book: McCormick, Patrick. Sin As Addiction. New York: Paulist Press, 1989

    Hindu-Christian Dialogue: Perspectives and Encounters

    Get PDF
    Reviewed Book: Coward, Harold (ed). Hindu-Christian Dialogue: Perspectives and Encounters. Maryknoll, New York: Orbis Books, 198

    Tight Bounds for Asymptotic and Approximate Consensus

    Get PDF
    We study the performance of asymptotic and approximate consensus algorithms under harsh environmental conditions. The asymptotic consensus problem requires a set of agents to repeatedly set their outputs such that the outputs converge to a common value within the convex hull of initial values. This problem, and the related approximate consensus problem, are fundamental building blocks in distributed systems where exact consensus among agents is not required or possible, e.g., man-made distributed control systems, and have applications in the analysis of natural distributed systems, such as flocking and opinion dynamics. We prove tight lower bounds on the contraction rates of asymptotic consensus algorithms in dynamic networks, from which we deduce bounds on the time complexity of approximate consensus algorithms. In particular, the obtained bounds show optimality of asymptotic and approximate consensus algorithms presented in [Charron-Bost et al., ICALP'16] for certain dynamic networks, including the weakest dynamic network model in which asymptotic and approximate consensus are solvable. As a corollary we also obtain asymptotically tight bounds for asymptotic consensus in the classical asynchronous model with crashes. Central to our lower bound proofs is an extended notion of valency, the set of reachable limits of an asymptotic consensus algorithm starting from a given configuration. We further relate topological properties of valencies to the solvability of exact consensus, shedding some light on the relation of these three fundamental problems in dynamic networks
    corecore