7,812 research outputs found

    Evaluation of porous ceramic cathode layers for solid oxide fuel cells

    Get PDF
    Sr0.15La0.85MnO3 layers with 2 and 10 u thickness, deposited on zirconia based electrolytes, were evaluated as cathodes for high temperature applications. Different electrode layers were characterized in terms of thickness, porosity, three phase boundary line per unit area (TPBL), and concentration polarization behavior. Electrodes with maximum porosity and TPBL exhibit minimum concentration polarization losses at constant current density

    Hydrodynamic resistance of concentration polarization boundary layers in ultrafiltration

    Get PDF
    The influence of concentration polarization on the permeate flux in the ultrafiltration of aqueous Dextran T70 solutions can be described by (i) the osmotic pressure model and (ii) the boundary layer resistance model. In the latter model the hydrodynamic resistance of the non-gelled boundary layer is computed using permeability data of the Dextran molecules obtained by sedimentation experiments. It is shown both in theory and experiment that the two models are equivalent

    Concentration polarization, surface currents, and bulk advection in a microchannel

    Get PDF
    We present a comprehensive analysis of salt transport and overlimiting currents in a microchannel during concentration polarization. We have carried out full numerical simulations of the coupled Poisson-Nernst-Planck-Stokes problem governing the transport and rationalized the behaviour of the system. A remarkable outcome of the investigations is the discovery of strong couplings between bulk advection and the surface current; without a surface current, bulk advection is strongly suppressed. The numerical simulations are supplemented by analytical models valid in the long channel limit as well as in the limit of negligible surface charge. By including the effects of diffusion and advection in the diffuse part of the electric double layers, we extend a recently published analytical model of overlimiting current due to surface conduction.Comment: 15 pages, 11 figures, Revtex 4.

    The boundary-layer resistance model for unstirred ultrafiltration. A new approach

    Get PDF
    The possibility to analyse concentration polarization phenomena during unstirred dead-end ultrafiltration by the boundary layer resistance theory has been shown by Nakao et al. [1]. Experimental data on the ultrafiltration of BSA at pH 7.4, at various concentrations and pressures, were analysed by this model and by a new version of the model in this paper. Instead of the assumption of the cake filtration theory, the new version of the model uses the unsteady state equation for solute mass transport to predict flux data by computer simulations. This approach requires no assumptions concerning the concentration at the membrane, the concentration profile or the specific resistance of the boundary layer. The computer simulations agree very well with the experimental data. Many agreements with Nakao's analyses are confirmed and some new data on the concentration polarization phenomena are obtaine

    Implications of inhomogeneous distribution of concentration polarization for interpretation of pressure-driven

    Get PDF
    A number of CFD studies have demonstrated that there is a considerable inhomogeneity of extent of Concentration Polarization (CP) over the membrane surface especially in spacer-filled feed channels. However, the consequences of this inhomogeneity for the interpretation of measurements of solute rejection in pressure-driven membrane processes have received little attention. This study uses a simple model of locally-1D CP combined with a postulated probability distribution of unstirred-layer thickness over the membrane thickness. In this way, we obtain transparent analytical results and can consider qualitative consequences of inhomogeneous distribution of CP over membrane surface. Our analysis shows that disregarding the CP distribution under-estimates the CP of strongly positively-rejected solutes and over-estimates the CP for the negatively-rejected ones. This observation is especially important for the interpretation of ion rejection from multi-ion solutions in nanofiltration where strong positive and pronounced negative rejections can occur simultaneously for solutes of different charges. We conclude that for reliable interpretation of pressure-driven membrane measurements it is desirable to reduce the inhomogeneity of CP distribution to a minimum in membrane-testing devicesPeer ReviewedPostprint (author's final draft

    Effect of concentration polarization on permselectivity

    Get PDF
    In this paper, the variation of permselectivity in the course of concentration polarization is systematically analyzed for a three-layer membrane system consisting of a nonperfectly permselective ion exchange membrane, homogeneous or heterogeneous, flanked by two diffusion layers of a binary univalent electrolyte. For a heterogeneous membrane, an ionic transport model is proposed, which is amenable to analytical treatment. In this model, assuming a constant fixed charge in the membrane and disregarding water splitting, the entire transport problem is reduced to solution of a single algebraic equation for the counterion transport number. It is concluded that for both types of membrane the concentration polarization may significantly affect the permselectivity of the system through the effects of the induced nonuniformity of the coion diffusion flux in the membrane (convexity of the coion concentration profile) and varying membrane-solution interface concentration. While the former is significant for low membrane fixed charge density, for a heterogeneous membrane, the latter might be considerably affected by the flux focusing effect at the permeable membrane segments.United States-Israel Binational Science Foundation (Grant 2010199

    Diffusional phenomena in membrane separation processes

    Get PDF
    Nowadays membrane filtration processes are used industrially as an alternative to conventional separation methods. Membrane separation methods can be divided into classes according to their separation characteristics: (i) separation by sieving action; (ii) separation due to a difference in affinity and diffusivity; (iii) separation due to a difference in charge of molecules; (iv) carrier-facilitated transport, and (v) the process of (time-) controlled released by diffusion. In all these cases diffusion processes play an important role in the transport mechanism of the solutes. Various mechanisms have been distinguished to describe the transport in membranes: transport through bulk material (dense membranes), Knudsen diffusion in narrow pores, viscous flow in wide pores or surface diffusion along pore walls. In practice, the transport can be a result of more than only one of these mechanisms. For all of these mechanisms models have been derived. The characteristics of a membrane, e.g. its crystallinity or its charge, can also have major consequences for the rate of diffusion in the membrane, and hence for the flux obtained. Apart from the diffusion transport processes in membranes mentioned above, other important diffusion processes are related to membrane processes, viz. diffusion in the boundary layer near the membrane (concentration polarization phenomena) and diffusion during membrane formation. The degree of concentration polarization is related to the magnitude of the mass transfer coefficient which, in turn, is influenced by the diffusion coefficient. The effect of concentration polarization can be rather different for the various membrane processes. The phase inversion membrane formation mechanism is determined to a large extent by the kinetic aspects during membrane formation, which are diffusion of solvent and of non-solvent and the kinetics of the phase separation itself

    Accurate Multi-physics Numerical Analysis of Particle Preconcentration Based on Ion Concentration Polarization

    Full text link
    This paper studies mechanism of preconcentration of charged particles in a straight micro-channel embedded with permselective membranes, by numerically solving coupled transport equations of ions, charged particles and solvent fluid without any simplifying assumptions. It is demonstrated that trapping and preconcentration of charged particles are determined by the interplay between drag force from the electroosmotic fluid flow and the electrophoretic force applied trough the electric field. Several insightful characteristics are revealed, including the diverse dynamics of co-ions and counter ions, replacement of co-ions by focused particles, lowered ion concentrations in particle enriched zone, and enhanced electroosmotic pumping effect etc. Conditions for particles that may be concentrated are identified in terms of charges, sizes and electrophoretic mobilities of particles and co-ions. Dependences of enrichment factor on cross-membrane voltage, initial particle concentration and buffer ion concentrations are analyzed and the underlying reasons are elaborated. Finally, post priori a condition for validity of decoupled simulation model is given based on charges carried by focused charge particles and that by buffer co-ions. These results provide important guidance in the design and optimization of nanofluidic preconcentration and other related devices.Comment: 18 pages, 11 firgure
    corecore