1,819 research outputs found

    SCOPE: Scalable Composite Optimization for Learning on Spark

    Full text link
    Many machine learning models, such as logistic regression~(LR) and support vector machine~(SVM), can be formulated as composite optimization problems. Recently, many distributed stochastic optimization~(DSO) methods have been proposed to solve the large-scale composite optimization problems, which have shown better performance than traditional batch methods. However, most of these DSO methods are not scalable enough. In this paper, we propose a novel DSO method, called \underline{s}calable \underline{c}omposite \underline{op}timization for l\underline{e}arning~({SCOPE}), and implement it on the fault-tolerant distributed platform \mbox{Spark}. SCOPE is both computation-efficient and communication-efficient. Theoretical analysis shows that SCOPE is convergent with linear convergence rate when the objective function is convex. Furthermore, empirical results on real datasets show that SCOPE can outperform other state-of-the-art distributed learning methods on Spark, including both batch learning methods and DSO methods

    Forward-backward truncated Newton methods for convex composite optimization

    Full text link
    This paper proposes two proximal Newton-CG methods for convex nonsmooth optimization problems in composite form. The algorithms are based on a a reformulation of the original nonsmooth problem as the unconstrained minimization of a continuously differentiable function, namely the forward-backward envelope (FBE). The first algorithm is based on a standard line search strategy, whereas the second one combines the global efficiency estimates of the corresponding first-order methods, while achieving fast asymptotic convergence rates. Furthermore, they are computationally attractive since each Newton iteration requires the approximate solution of a linear system of usually small dimension

    Global convergence of splitting methods for nonconvex composite optimization

    Full text link
    We consider the problem of minimizing the sum of a smooth function hh with a bounded Hessian, and a nonsmooth function. We assume that the latter function is a composition of a proper closed function PP and a surjective linear map M\cal M, with the proximal mappings of τP\tau P, τ>0\tau > 0, simple to compute. This problem is nonconvex in general and encompasses many important applications in engineering and machine learning. In this paper, we examined two types of splitting methods for solving this nonconvex optimization problem: alternating direction method of multipliers and proximal gradient algorithm. For the direct adaptation of the alternating direction method of multipliers, we show that, if the penalty parameter is chosen sufficiently large and the sequence generated has a cluster point, then it gives a stationary point of the nonconvex problem. We also establish convergence of the whole sequence under an additional assumption that the functions hh and PP are semi-algebraic. Furthermore, we give simple sufficient conditions to guarantee boundedness of the sequence generated. These conditions can be satisfied for a wide range of applications including the least squares problem with the 1/2\ell_{1/2} regularization. Finally, when M\cal M is the identity so that the proximal gradient algorithm can be efficiently applied, we show that any cluster point is stationary under a slightly more flexible constant step-size rule than what is known in the literature for a nonconvex hh.Comment: To appear in SIOP

    The Extended Regularized Dual Averaging Method for Composite Optimization

    Full text link
    We present a new algorithm, extended regularized dual averaging (XRDA), for solving composite optimization problems, which are a generalization of the regularized dual averaging (RDA) method. The main novelty of the method is that it allows more flexible control of the backward step size. For instance, the backward step size for RDA grows without bound, while XRDA the backward step size can be kept bounded
    corecore