4,490,280 research outputs found
Time complexity and gate complexity
We formulate and investigate the simplest version of time-optimal quantum
computation theory (t-QCT), where the computation time is defined by the
physical one and the Hamiltonian contains only one- and two-qubit interactions.
This version of t-QCT is also considered as optimality by sub-Riemannian
geodesic length. The work has two aims: one is to develop a t-QCT itself based
on physically natural concept of time, and the other is to pursue the
possibility of using t-QCT as a tool to estimate the complexity in conventional
gate-optimal quantum computation theory (g-QCT). In particular, we investigate
to what extent is true the statement: time complexity is polynomial in the
number of qubits if and only if so is gate complexity. In the analysis, we
relate t-QCT and optimal control theory (OCT) through fidelity-optimal
computation theory (f-QCT); f-QCT is equivalent to t-QCT in the limit of unit
optimal fidelity, while it is formally similar to OCT. We then develop an
efficient numerical scheme for f-QCT by modifying Krotov's method in OCT, which
has monotonic convergence property. We implemented the scheme and obtained
solutions of f-QCT and of t-QCT for the quantum Fourier transform and a unitary
operator that does not have an apparent symmetry. The former has a polynomial
gate complexity and the latter is expected to have exponential one because a
series of generic unitary operators has a exponential gate complexity. The time
complexity for the former is found to be linear in the number of qubits, which
is understood naturally by the existence of an upper bound. The time complexity
for the latter is exponential. Thus the both targets are examples satisfyng the
statement above. The typical characteristics of the optimal Hamiltonians are
symmetry under time-reversal and constancy of one-qubit operation, which are
mathematically shown to hold in fairly general situations.Comment: 11 pages, 6 figure
On Descriptive Complexity, Language Complexity, and GB
We introduce , a monadic second-order language for reasoning about
trees which characterizes the strongly Context-Free Languages in the sense that
a set of finite trees is definable in iff it is (modulo a
projection) a Local Set---the set of derivation trees generated by a CFG. This
provides a flexible approach to establishing language-theoretic complexity
results for formalisms that are based on systems of well-formedness constraints
on trees. We demonstrate this technique by sketching two such results for
Government and Binding Theory. First, we show that {\em free-indexation\/}, the
mechanism assumed to mediate a variety of agreement and binding relationships
in GB, is not definable in and therefore not enforcible by CFGs.
Second, we show how, in spite of this limitation, a reasonably complete GB
account of English can be defined in . Consequently, the language
licensed by that account is strongly context-free. We illustrate some of the
issues involved in establishing this result by looking at the definition, in
, of chains. The limitations of this definition provide some insight
into the types of natural linguistic principles that correspond to higher
levels of language complexity. We close with some speculation on the possible
significance of these results for generative linguistics.Comment: To appear in Specifying Syntactic Structures, papers from the Logic,
Structures, and Syntax workshop, Amsterdam, Sept. 1994. LaTeX source with
nine included postscript figure
Hamiltonian complexity
In recent years we've seen the birth of a new field known as hamiltonian
complexity lying at the crossroads between computer science and theoretical
physics. Hamiltonian complexity is directly concerned with the question: how
hard is it to simulate a physical system? Here I review the foundational
results, guiding problems, and future directions of this emergent field.Comment: 14 page
Complexity as Process: Complexity Inspired Approaches to Composition
This article examines the use of Complexity Theory as an inspiration for the creation of new musical works, and highlights problems and possible solutions associated with its application as a compositional tool. In particular it explores how the philosophy behind Complexity Theory affects notions of process-based composition, indeterminacy in music and the performer/listener/environment relationship, culminating in providing a basis for the understanding of music creation as an active process within a context. The author presents one of his own sound installations, Cross-Pollination, as an example of a composition inspired and best understood from the philosophical position as described in Complexity Theory
From average case complexity to improper learning complexity
The basic problem in the PAC model of computational learning theory is to
determine which hypothesis classes are efficiently learnable. There is
presently a dearth of results showing hardness of learning problems. Moreover,
the existing lower bounds fall short of the best known algorithms.
The biggest challenge in proving complexity results is to establish hardness
of {\em improper learning} (a.k.a. representation independent learning).The
difficulty in proving lower bounds for improper learning is that the standard
reductions from -hard problems do not seem to apply in this
context. There is essentially only one known approach to proving lower bounds
on improper learning. It was initiated in (Kearns and Valiant 89) and relies on
cryptographic assumptions.
We introduce a new technique for proving hardness of improper learning, based
on reductions from problems that are hard on average. We put forward a (fairly
strong) generalization of Feige's assumption (Feige 02) about the complexity of
refuting random constraint satisfaction problems. Combining this assumption
with our new technique yields far reaching implications. In particular,
1. Learning 's is hard.
2. Agnostically learning halfspaces with a constant approximation ratio is
hard.
3. Learning an intersection of halfspaces is hard.Comment: 34 page
- …
