7,658,014 research outputs found
Additive Combination Spaces
We introduce a class of metric spaces called -additive combinations and
show that for such spaces we may deduce information about their -negative
type behaviour by focusing on a relatively small collection of almost disjoint
metric subspaces, which we call the components. In particular we deduce a
formula for the -negative type gap of the space in terms of the -negative
type gaps of the components, independent of how the components are arranged in
the ambient space. This generalizes earlier work on metric trees by Doust and
Weston. The results hold for semi-metric spaces as well, as the triangle
inequality is not used.Comment: 17 page
Combination of linear classifiers using score function -- analysis of possible combination strategies
In this work, we addressed the issue of combining linear classifiers using
their score functions. The value of the scoring function depends on the
distance from the decision boundary. Two score functions have been tested and
four different combination strategies were investigated. During the
experimental study, the proposed approach was applied to the heterogeneous
ensemble and it was compared to two reference methods -- majority voting and
model averaging respectively. The comparison was made in terms of seven
different quality criteria. The result shows that combination strategies based
on simple average, and trimmed average are the best combination strategies of
the geometrical combination
An augmented three-pass system combination framework: DCU combination system for WMT 2010
This paper describes the augmented threepass
system combination framework of
the Dublin City University (DCU) MT
group for the WMT 2010 system combination
task. The basic three-pass framework
includes building individual confusion
networks (CNs), a super network, and
a modified Minimum Bayes-risk (mCon-
MBR) decoder. The augmented parts for
WMT2010 tasks include 1) a rescoring
component which is used to re-rank the
N-best lists generated from the individual
CNs and the super network, 2) a new hypothesis
alignment metric – TERp – that
is used to carry out English-targeted hypothesis
alignment, and 3) more different
backbone-based CNs which are employed
to increase the diversity of the
mConMBR decoding phase. We took
part in the combination tasks of Englishto-
Czech and French-to-English. Experimental
results show that our proposed
combination framework achieved 2.17 absolute
points (13.36 relative points) and
1.52 absolute points (5.37 relative points)
in terms of BLEU score on English-to-
Czech and French-to-English tasks respectively
than the best single system. We
also achieved better performance on human
evaluation
Combination throttle and shutoff valve
Combination of translating sleeve throttle valve and conventional poppet valve provides capability of shutting off flow completely by poppet and sleeve control of the rate of flow. Integration of the two concepts can be accomplished without difficulty and in a manner that requires a minimum of development
A Combination Framework for Complexity
In this paper we present a combination framework for polynomial complexity
analysis of term rewrite systems. The framework covers both derivational and
runtime complexity analysis. We present generalisations of powerful complexity
techniques, notably a generalisation of complexity pairs and (weak) dependency
pairs. Finally, we also present a novel technique, called dependency graph
decomposition, that in the dependency pair setting greatly increases
modularity. We employ the framework in the automated complexity tool TCT. TCT
implements a majority of the techniques found in the literature, witnessing
that our framework is general enough to capture a very brought setting
System combination with extra alignment information
This paper provides the system description of the IHMM team of Dublin City University for our participation in the system combination task in the Second Workshop on Applying Machine Learning Techniques to Optimise the Division of Labour in Hybrid MT (ML4HMT-12). Our work is based on a confusion network-based approach to system combination. We propose a new method to build a confusion network for this: (1) incorporate extra alignment information extracted from given meta data, treating them as sure alignments, into the results from IHMM, and (2) decode together with this information. We also heuristically set one of the system outputs as the default backbone. Our results show that this backbone, which is the RBMT system output, achieves an 0.11% improvement in BLEU over the backbone chosen by TER, while the extra information we added in the decoding part does not improve the results
Combination Strategies for Semantic Role Labeling
This paper introduces and analyzes a battery of inference models for the
problem of semantic role labeling: one based on constraint satisfaction, and
several strategies that model the inference as a meta-learning problem using
discriminative classifiers. These classifiers are developed with a rich set of
novel features that encode proposition and sentence-level information. To our
knowledge, this is the first work that: (a) performs a thorough analysis of
learning-based inference models for semantic role labeling, and (b) compares
several inference strategies in this context. We evaluate the proposed
inference strategies in the framework of the CoNLL-2005 shared task using only
automatically-generated syntactic information. The extensive experimental
evaluation and analysis indicates that all the proposed inference strategies
are successful -they all outperform the current best results reported in the
CoNLL-2005 evaluation exercise- but each of the proposed approaches has its
advantages and disadvantages. Several important traits of a state-of-the-art
SRL combination strategy emerge from this analysis: (i) individual models
should be combined at the granularity of candidate arguments rather than at the
granularity of complete solutions; (ii) the best combination strategy uses an
inference model based in learning; and (iii) the learning-based inference
benefits from max-margin classifiers and global feedback
- …
