7,658,014 research outputs found

    Additive Combination Spaces

    Full text link
    We introduce a class of metric spaces called pp-additive combinations and show that for such spaces we may deduce information about their pp-negative type behaviour by focusing on a relatively small collection of almost disjoint metric subspaces, which we call the components. In particular we deduce a formula for the pp-negative type gap of the space in terms of the pp-negative type gaps of the components, independent of how the components are arranged in the ambient space. This generalizes earlier work on metric trees by Doust and Weston. The results hold for semi-metric spaces as well, as the triangle inequality is not used.Comment: 17 page

    Combination of linear classifiers using score function -- analysis of possible combination strategies

    Full text link
    In this work, we addressed the issue of combining linear classifiers using their score functions. The value of the scoring function depends on the distance from the decision boundary. Two score functions have been tested and four different combination strategies were investigated. During the experimental study, the proposed approach was applied to the heterogeneous ensemble and it was compared to two reference methods -- majority voting and model averaging respectively. The comparison was made in terms of seven different quality criteria. The result shows that combination strategies based on simple average, and trimmed average are the best combination strategies of the geometrical combination

    An augmented three-pass system combination framework: DCU combination system for WMT 2010

    Get PDF
    This paper describes the augmented threepass system combination framework of the Dublin City University (DCU) MT group for the WMT 2010 system combination task. The basic three-pass framework includes building individual confusion networks (CNs), a super network, and a modified Minimum Bayes-risk (mCon- MBR) decoder. The augmented parts for WMT2010 tasks include 1) a rescoring component which is used to re-rank the N-best lists generated from the individual CNs and the super network, 2) a new hypothesis alignment metric – TERp – that is used to carry out English-targeted hypothesis alignment, and 3) more different backbone-based CNs which are employed to increase the diversity of the mConMBR decoding phase. We took part in the combination tasks of Englishto- Czech and French-to-English. Experimental results show that our proposed combination framework achieved 2.17 absolute points (13.36 relative points) and 1.52 absolute points (5.37 relative points) in terms of BLEU score on English-to- Czech and French-to-English tasks respectively than the best single system. We also achieved better performance on human evaluation

    Combination throttle and shutoff valve

    Get PDF
    Combination of translating sleeve throttle valve and conventional poppet valve provides capability of shutting off flow completely by poppet and sleeve control of the rate of flow. Integration of the two concepts can be accomplished without difficulty and in a manner that requires a minimum of development

    A Combination Framework for Complexity

    Get PDF
    In this paper we present a combination framework for polynomial complexity analysis of term rewrite systems. The framework covers both derivational and runtime complexity analysis. We present generalisations of powerful complexity techniques, notably a generalisation of complexity pairs and (weak) dependency pairs. Finally, we also present a novel technique, called dependency graph decomposition, that in the dependency pair setting greatly increases modularity. We employ the framework in the automated complexity tool TCT. TCT implements a majority of the techniques found in the literature, witnessing that our framework is general enough to capture a very brought setting

    System combination with extra alignment information

    Get PDF
    This paper provides the system description of the IHMM team of Dublin City University for our participation in the system combination task in the Second Workshop on Applying Machine Learning Techniques to Optimise the Division of Labour in Hybrid MT (ML4HMT-12). Our work is based on a confusion network-based approach to system combination. We propose a new method to build a confusion network for this: (1) incorporate extra alignment information extracted from given meta data, treating them as sure alignments, into the results from IHMM, and (2) decode together with this information. We also heuristically set one of the system outputs as the default backbone. Our results show that this backbone, which is the RBMT system output, achieves an 0.11% improvement in BLEU over the backbone chosen by TER, while the extra information we added in the decoding part does not improve the results

    Combination Strategies for Semantic Role Labeling

    Full text link
    This paper introduces and analyzes a battery of inference models for the problem of semantic role labeling: one based on constraint satisfaction, and several strategies that model the inference as a meta-learning problem using discriminative classifiers. These classifiers are developed with a rich set of novel features that encode proposition and sentence-level information. To our knowledge, this is the first work that: (a) performs a thorough analysis of learning-based inference models for semantic role labeling, and (b) compares several inference strategies in this context. We evaluate the proposed inference strategies in the framework of the CoNLL-2005 shared task using only automatically-generated syntactic information. The extensive experimental evaluation and analysis indicates that all the proposed inference strategies are successful -they all outperform the current best results reported in the CoNLL-2005 evaluation exercise- but each of the proposed approaches has its advantages and disadvantages. Several important traits of a state-of-the-art SRL combination strategy emerge from this analysis: (i) individual models should be combined at the granularity of candidate arguments rather than at the granularity of complete solutions; (ii) the best combination strategy uses an inference model based in learning; and (iii) the learning-based inference benefits from max-margin classifiers and global feedback
    corecore