87,538 research outputs found
Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix
Despite the crucial role of extracellular matrix (ECM) in directing cell fate in healthy and diseased tissues--particularly in development, wound healing, tissue regeneration and cancer--the mechanisms that direct the assembly and regulate hierarchical architectures of ECM are poorly understood. Collagen I matrix assembly in vivo requires active fibronectin (Fn) fibrillogenesis by cells. Here we exploit Fn-FRET probes as mechanical strain sensors and demonstrate that collagen I fibres preferentially co-localize with more-relaxed Fn fibrils in the ECM of fibroblasts in cell culture. Fibre stretch-assay studies reveal that collagen I's Fn-binding domain is responsible for the mechano-regulated interaction. Furthermore, we show that Fn-collagen interactions are reciprocal: relaxed Fn fibrils act as multivalent templates for collagen assembly, but once assembled, collagen fibres shield Fn fibres from being stretched by cellular traction forces. Thus, in addition to the well-recognized, force-regulated, cell-matrix interactions, forces also tune the interactions between different structural ECM components.233157 - European Research Council; PN2 EY016586 - NEI NIH HH
Live Imaging of Type I Collagen Assembly Dynamics in Osteoblasts Stably Expressing GFP and mCherry-Tagged Collagen Constructs
Type I collagen is the most abundant extracellular matrix protein in bone and other connective tissues and plays key roles in normal and pathological bone formation as well as in connective tissue disorders and fibrosis. Although much is known about the collagen biosynthetic pathway and its regulatory steps, the mechanisms by which it is assembled extracellularly are less clear. We have generated GFPtpz and mCherry-tagged collagen fusion constructs for live imaging of type I collagen assembly by replacing the α2(I)-procollagen N-terminal propeptide with GFPtpz or mCherry. These novel imaging probes were stably transfected into MLO-A5 osteoblast-like cells and fibronectin-null mouse embryonic fibroblasts (FN-null-MEFs) and used for imaging type I collagen assembly dynamics and its dependence on fibronectin. Both fusion proteins co-precipitated with α1(I)-collagen and remained intracellular without ascorbate but were assembled into α1(I) collagen-containing extracellular fibrils in the presence of ascorbate. Immunogold-EM confirmed their ultrastuctural localization in banded collagen fibrils. Live cell imaging in stably transfected MLO-A5 cells revealed the highly dynamic nature of collagen assembly and showed that during assembly the fibril networks are continually stretched and contracted due to the underlying cell motion. We also observed that cell-generated forces can physically reshape the collagen fibrils. Using co-cultures of mCherry- and GFPtpz-collagen expressing cells, we show that multiple cells contribute collagen to form collagen fiber bundles. Immuno-EM further showed that individual collagen fibrils can receive contributions of collagen from more than one cell. Live cell imaging in FN-null-MEFs expressing GFPtpz-collagen showed that collagen assembly was both dependent upon and dynamically integrated with fibronectin assembly. These GFP-collagen fusion constructs provide a powerful tool for imaging collagen in living cells and have revealed novel and fundamental insights into the dynamic mechanisms for the extracellular assembly of collagen
Biosynthesis and enzymology of the Caenorhabditis elegans cuticle: identification and characterization of a novel serine protease inhibitor.
The nematode Caenorhabditis elegans represents an excellent model in which to examine nematode gene expression and function. A completed genome, straightforward transgenesis, available mutants and practical genome-wide RNAi approaches provide an invaluable toolkit in the characterization of
nematode genes. We have performed a targeted RNAi screen in an attempt to identify components of the cuticle collagen biosynthetic pathway. Collagen biosynthesis and cuticle assembly are multi-step processes that involve numerous key enzymes involved in post-translational modification, trimer folding, procollagen processing and subsequent cross-linking stages. Many of these steps, the modifications and the enzymes are unique to nematodes and may represent attractive targets for the control of parasitic nematodes. A novel serine protease inhibitor was uncovered during our targeted screen, which is involved in collagen maturation,
proper cuticle assembly and the moulting process. We have confirmed a link between this inhibitor and the previously uncharacterized bli-5 locus in C. elegans. The mutant phenotype, spatial expression pattern and the over-expression phenotype of the BLI-5 protease inhibitor and their relevance to collagen biosynthesis are discussed
Recommended from our members
Broadly conserved roles of TMEM131 family proteins in intracellular collagen assembly and secretory cargo trafficking.
Collagen is the most abundant protein in animals. Its dysregulation contributes to aging and many human disorders, including pathological tissue fibrosis in major organs. How premature collagen proteins in the endoplasmic reticulum (ER) assemble and route for secretion remains molecularly undefined. From an RNA interference screen, we identified an uncharacterized Caenorhabditis elegans gene tmem-131, deficiency of which impairs collagen production and activates ER stress response. We find that amino termini of human TMEM131 contain bacterial PapD chaperone-like domains, which recruit premature collagen monomers for proper assembly and secretion. Carboxy termini of TMEM131 interact with TRAPPC8, a component of the TRAPP tethering complex, to drive collagen cargo trafficking from ER to the Golgi. We provide evidence that previously undescribed roles of TMEM131 in collagen recruitment and secretion are evolutionarily conserved in C. elegans, Drosophila, and humans
Second-harmonic generation microscopy analysis reveals proteoglycan decorin is necessary for proper collagen organization in prostate.
Collagen remodeling occurs in many prostate pathologies; however, the underlying structural architecture in both normal and diseased prostatic tissues is largely unexplored. Here, we use second-harmonic generation (SHG) microscopy to specifically probe the role of the proteoglycan decorin (Dcn) on collagen assembly in a wild type (wt) and Dcn null mouse (Dcn - / - ). Dcn is required for proper organization of collagen fibrils as it regulates size by forming an arch-like structure at the end of the fibril. We have utilized SHG metrics based on emission directionality (forward-backward ratio) and relative conversion efficiency, which are both related to the SHG coherence length, and found more disordered fibril organization in the Dcn - / - . We have also used image analysis readouts based on entropy, multifractal dimension, and wavelet transforms to compare the collagen fibril/fiber architecture in the two models, where all these showed that the Dcn - / - prostate comprised smaller and more disorganized collagen structures. All these SHG metrics are consistent with decreased SHG phase matching in the Dcn - / - and are further consistent with ultrastructural analysis of collagen in this model in other tissues, which show a more random distribution of fibril sizes and their packing into fibers. As Dcn is a known tumor suppressor, this work forms the basis for future studies of collagen remodeling in both malignant and benign prostate disease
Hierarchical nanomechanics of collagen microfibrils
Collagen constitutes one third of the human proteome, providing mechanical stability, elasticity and strength to connective tissues. Collagen is also the dominating material in the extracellular matrix (ECM) and is thus crucial for cell differentiation, growth and pathology. However, fundamental questions remain with respect to the origin of the unique mechanical properties of collagenous tissues, and in particular its stiffness, extensibility and nonlinear mechanical response. By using x-ray diffraction data of a collagen fibril reported by Orgel et al. (Proceedings of the National Academy of Sciences USA, 2006) in combination with protein structure identification methods, here we present an experimentally validated model of the nanomechanics of a collagen microfibril that incorporates the full biochemical details of the amino acid sequence of the constituting molecules. We report the analysis of its mechanical properties under different levels of stress and solvent conditions, using a full-atomistic force field including explicit water solvent. Mechanical testing of hydrated collagen microfibrils yields a Young’s modulus of ≈300 MPa at small and ≈1.2 GPa at larger deformation in excess of 10% strain, in excellent agreement with experimental data. Dehydrated, dry collagen microfibrils show a significantly increased Young’s modulus of ≈1.8 to 2.25 GPa (or ≈6.75 times the modulus in the wet state) owing to a much tighter molecular packing, in good agreement with experimental measurements (where an increase of the modulus by ≈9 times was found). Our model demonstrates that the unique mechanical properties of collagen microfibrils can be explained based on their hierarchical structure, where deformation is mediated through mechanisms that operate at different hierarchical levels. Key mechanisms involve straightening of initially disordered and helically twisted molecules at small strains, followed by axial stretching of molecules, and eventual molecular uncoiling at extreme deformation. These mechanisms explain the striking difference of the modulus of collagen fibrils compared with single molecules, which is found in the range of 4.8±2 GPa or ≈10-20 times greater. These findings corroborate the notion that collagen tissue properties are highly scale dependent and nonlinear elastic, an issue that must be considered in the development of models that describe the interaction of cells with collagen in the extracellular matrix. A key impact the atomistic model of collagen microfibril mechanics reported here is that it enables the bottom-up elucidation of structure-property relationships in the broader class of collagen materials such as tendon or bone, including studies in the context of genetic disease where the incorporation of biochemical, genetic details in material models of connective tissue is essential
Collagens - structure, function and biosynthesis.
The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue
The effects of nanoparticles on the physical properties of type I collagen : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Chemistry at Massey University, Palmerston North, New Zealand
This thesis concerned with the interactions of surface functionalized TiO2 and ZnO NPs with type I collagen. The collagen nanocomposites formed with TiO2 and ZnO NPs may be potential candidates for some biomedical applications thanks to the synergetic effects between two materials. How the physical properties of collagen have been changed when interacting with TiO2 and ZnO NPs has been investigated in this project. The general background and research objectives of this study are introduced in Chapter 1, followed by Chapter 2 which gives details about the preparation of the samples, in addition to the characterization techniques and protocols. The TiO2 and ZnO NPs were synthesized by colloidal synthetic methods and their surfaces were functionalized with different functional groups. The physical properties of the TiO2-collagen nanocomposites and ZnO-induced collagen gels were studied by rheology, DSC, swelling ratio assay, FTIR and confocal microscopy. The mechanical studies are the main focus of this thesis.
In Chapter 3, TiO2 NPs coated with chitosan and PAA were introduced into collagen solutions before fibrillogenesis was carried out. They were found to affect the linear rheology of the collagen gels as a function of their concentration. There were no significant differences in the strain-stress response in the non-linear rheology. It was found that the PAA coated TiO2 NPs promoted collagen fibrillogenesis, resulting in thin fibrils, and a dense and more crosslinked structure, while the chitosan coated TiO2 NPs slowed down the collagen fibrillogenesis and created a heterogeneous network with thick fibrils and less crosslinks.
ZnO-PVP NPs were found to induce collagen gelation without the use of the conventional fibrillogenesis involving gelation buffer, as reported in Chapter 4. The
hydrogel formed with this method was found to be three times as strong as the gel formed with conventional gelation buffer at the same collagen concentration. Confocal images indicated those two gels have different molecular assembly states. A group of experiments showed ZnO acted as a neutralizing agent here to raise the pH of the collagen solution to the pH close to the isoelectric point of the collagen.
Both the TiO2 and ZnO NP-collagen systems have demonstrated that different collagen networks can be created by the direct or indirect interactions between collagen monomer solution and the nanoparticles. By manipulating the assembly of collagen to design different networks, it is possible to achieve the physical properties required for different applications.
The results are followed by the conclusions and future perspectives of this study
Effect of pH and temperature on the morphology and phases of co-precipitated hydroxyapatite
This paper reports a high-yield process to fabricate biomimetic hydroxyapatite nano-particles or nano-plates. Hydroxyapatite is obtained by simultaneous dripping of calcium chloride and ammonium hydrogen phosphate solutions into a reaction vessel. Reactions were carried out under various pH and temperature conditions. The morphology and phase composition of the precipitates were investigated using scanning electron microscope and X-ray diffraction. The analyses showed that large plates of calcium hydrophosphate are formed at neutral or acidic pH condition. Nanoparticles of hydroxyapatite were obtained in precipitates prepared at pH 9–11. Hydroxyapatite plates akin to seashell nacre were obtained at 40 °C and pH 9. This material holds promise to improve the strength of hydroxyapatite containing composites for bone implant or bone cement used in orthopaedic surgeries. The thermodynamics of the crystal growth under these conditions was discussed. An assembly mechanism of the hydroxyapatite plates was proposed according to the nanostructure observations
- …
