

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

The effects of nanoparticles on the physical properties of type I collagen

A thesis presented in partial fulfilment of the requirements for the degree of

> Master of Science in Chemistry

At Massey University, Palmerston North, New Zealand.

Jiaxin Lian

2016

Acknowledgements

I would like to thank everyone who gave me guidance and support throughout my master project. I would like to thank in particular:

My primary supervisor Prof. Bill Williams for his supervision and encouragement. There were so many times when I was stuck and frustrated but a conversation with him made me relax and had a clear idea about what to do next.

My co-supervisor Dr. Sujay Prabakar for his time for discussions and encouragement, and giving me the opportunity to undertake this project for my master.

Dr. Bradley Mansel for his help and assistance in conducting some experiments, developing experimental protocols and data analysis.

Dr. Allan Raudsepp for his training on the rheometers.

Dr. Meekyung Ahn for her training on collagen extraction and characterization with SDS-PAGE, and her encouragements during my study.

Niki Murray for conducting the confocal microscopy imaging.

Dr. Bridget Ingham for the training and discussions on the synchrotron experiments and data analysis.

Pablo Hernandez-Cerdan, Lisa Kent and other biophysics group members for the interesting discussions on parts of the project.

Chris Hall for his assistance when using the rheometer in the Riddet Institute.

I would like to thank my parents, cousins and uncles for their support and encouragement.

Finally, I would like to acknowledge New Zealand Leather and Shoe Research Association and the MacDiarmid Institute for fundings. I would also like to acknowledge the Ministry of Business, Innovation and Employment (MBIE) for funding through grant LSRX-1301.

The SAXS experiments for this project were undertaken on the SAXS/WAXS beamline at the Australian Synchrotron, Victoria, Australia.

Abstract

This thesis concerned with the interactions of surface functionalized TiO₂ and ZnO NPs with type I collagen. The collagen nanocomposites formed with TiO₂ and ZnO NPs may be potential candidates for some biomedical applications thanks to the synergetic effects between two materials. How the physical properties of collagen have been changed when interacting with TiO₂ and ZnO NPs has been investigated in this project. The general background and research objectives of this study are introduced in Chapter 1, followed by Chapter 2 which gives details about the preparation of the samples, in addition to the characterization techniques and protocols. The TiO₂ and ZnO NPs were synthesized by colloidal synthetic methods and their surfaces were functionalized with different functional groups. The physical properties of the TiO₂-collagen nanocomposites and ZnO-induced collagen gels were studied by rheology, DSC, swelling ratio assay, FTIR and confocal microscopy. The mechanical studies are the main focus of this studys.

In Chapter 3, TiO_2 NPs coated with chitosan and PAA were introduced into collagen solutions before fibrillogenesis was carried out. They were found to affect the linear rheology of the collagen gels as a function of their concentration. There were no significant differences in the strain-stress response in the non-linear rheology. It was found that the PAA coated TiO_2 NPs promoted collagen fibrillogenesis, resulting in thin fibrils, and a dense and more crosslinked structure, while the chitosan coated TiO_2 NPs slowed down the collagen fibrillogenesis and created a heterogeneous network with thick fibrils and less crosslinks.

ZnO-PVP NPs were found to induce collagen gelation without the use of the conventional fibrillogenesis involving gelation buffer, as reported in Chapter 4. The

hydrogel formed with this method was found to be three times as strong as the gel formed with conventional gelation buffer at the same collagen concentration. Confocal images indicated those two gels have different molecular assembly states. A group of experiments showed ZnO acted as a neutralizing agent here to raise the pH of the collagen solution to the pH close to the isoelectric point of the collagen.

Both the TiO_2 and ZnO NP-collagen systems have demonstrated that different collagen networks can be created by the direct or indirect interactions between collagen monomer solution and the nanoparticles. By manipulating the assembly of collagen to design different networks, it is possible to achieve the physical properties required for different applications.

The results are followed by the conclusions and future perspectives of this study.

Table of Contents

Acknow	iledgementsi		
Abstractiii			
Table of Contentsv			
List of Figuresvii			
List of Tablesx			
Abbreviationsxi			
1. Int	roduction1		
1.1.	Collagen1		
1.2.	Nanoparticles		
1.3.	Collagen nanocomposite		
1.4.	Rheology14		
1.5.	Objectives		
2. Ex	perimental methods24		
2.1.	Materials		
2.2.	Nanoparticle synthesis		
2.3.	Collagen extraction from limed split		
2.4.	Nanoparticle collagen hydrogels		
2.5.	Statistics		
3. Ti C	D ₂ -collagen nanocomposite hydrogels40		
3.1.	Characterization of surface functionalized TiO ₂ NPs40		
3.2.	Preparation of TiO ₂ -collagen nanocomposites43		
3.3.	Rheology		
3.4.	Collagen network morphology		
3.5.	Other physical characterizations		
3.6.	Chapter summary		

4.	ZnO	D-induced collagen hydrogel*	.70
4	l.1.	Characterization of PVP capped ZnO NPs	.70
4	1.2.	Preparation of ZnO-PVP-induced collagen hydrogel	.73
4	1.3.	Rheology of the collagen gels	.74
4	1.4.	Hydrogel network morphology	.79
4	I.5.	Small angle X ray scattering (SAXS)	.80
4	I.6.	Investigating the mechanism of gel formation	.81
4	I.7.	Swelling ratio	.90
4	I.8.	Thermal stabilities of the ZnO-PVP-induced collagen hydrogels	.92
4	l.9.	Chapter summary	.93
5.	Co	nclusions and Future work	.95
5	5.1.	Conclusions	.95
5	5.2.	Future perspectives	.97
References			

List of Figures

Figure 1.1 Illustration of direct inter H-bonding formed in a segment of collagen triple helix
Figure 1.2 Scheme of collagen fibrillogenesis <i>in vivo</i>
Figure 1.3 Illustration of shear flow using a one-dimensional parallel plate model15
Figure 1.4 Strain and stress curves for solid, fluid and viscoelastic material17
Figure 1.5 Strain stiffening in some biopolymer networks and a typical differential shear modulus versus stress curve of a strain stiffening biopolymer
Figure 2.1 FTIR spectrum of limed split extracted collagen
Figure 2.2 SDS-PAGE of limed split extracted collagen
Figure 2.3 A basic setup for a laser light scattering experiment and an example of the speckle pattern of collagen scattered by laser light
Figure 3.1 Representative TEM image of the TiO ₂ NPs41
Figure 3.2 FTIR spectra of TiO ₂ NPs before and after surface functionalization42
Figure 3.3 Thermogravimetric curves (5°C/min) of TiO ₂ NPs43
Figure 3.4 FTIR spectra of collagen and TiO ₂ -collagen nanocomposite hydrogels45
Figure 3.5 G's of the collagen and TiO ₂ -collagen nanocomposites (4 mg/mL) as a function of time during gelation at 1 Hz, 1% strain and 30°C46
Figure 3.6 Viscoelasticites and power law scaling for elasticities of collagen and TiO ₂ - collagen nanocomposites as functions of collagen concentrations
Figure 3.7 Critical strains and yield strains of collagen and TiO ₂ -collagen nanocomposites as functions of collagen concentration
Figure 3.8 Modulus ratios (G' _{max} /G' _o) of collagen and TiO ₂ -collagen nanocomposites as functions of collagen concentration
Figure 3.9 Differential shear modulus (K) versus stress curves for collagen and TiO ₂ - collagen nanocomposites in different collagen concentrations
Figure 3.10 Viscoelasticities of TiO ₂ -collagen nanocomposites as functions of collagen to TiO ₂ NP mass ratios

Figure 3.11 Critical strains and yield strains of TiO ₂ -collagen nanocomposites with different collagen to TiO ₂ NP mass ratios
Figure 3.12 Modulus ratios of TiO ₂ -collagen nanocomposites as a function of collagen to TiO ₂ NP mass ratio
Figure 3.13 K versus stress curves for TiO ₂ -collagen with different mass ratios of collagen to TiO ₂ NPs
Figure 3.14 Viscoelasticities of collagen, capping agent-collagen composites and TiO ₂ - collagen nanocomposites hydrogels
Figure 3.15 Critical strains, yield strains and modulus ratios of TiO ₂ -collagen and capping agent-collagen hydrogels
Figure 3.16 Consecutive strain ramps for collagen and TiO ₂ -collagen hydrogels62
Figure 3.17 Confocal fluorescence images of collagen and TiO ₂ -collagen nanocomposite
Figure 3.18 Structural network developments of TiO ₂ -collagen nanocomposites in fibrillogenesis and large amplitude deformations
Figure 3.19 Swelling ratios of collagen and TiO ₂ -collagen nanocomposites67
Figure 3.20 Denaturation temperatures of collagen and TiO ₂ -collagen nanocomposites.
Figure 4.1 TEM image of ZnO-PVP NPs71
Figure 4.2 FTIR spectra of ZnO NPs prepared without and with PVP capping72
Figure 4.3 Thermogravimetric curves (5°C/min) of ZnO NPs without and with PVP capping
Figure 4.4 The relative intensities of absorbance at 344 nm for purified ZnO-plain and ZnO-PVP NPs in water as a function of time
Figure 4.5 Schematic illustration of the fabrication procedure for ZnO-PVP induced collagen hydrogel
Figure 4.6 The viscoelasticities of conventional collagen gel (control) and the ZnO-PVP induced collagen gels with different collagen to ZnO-PVP mass ratios

Figure 4.7 The viscoelasticities of ZnO-PVP NPs-induced collagen gels as a function of collagen concentration
Figure 4.8 Differential shear modulus (K) versus stress curves for conventional collagen (control) and ZnO-PVP-induced collagen gels in different collagen to ZnO-PVP mass ratios
Figure 4.9 Differential shear modulus (K) versus stress curves for ZnO-PVP-induced collagen gels in different collagen concentrations
Figure 4.10 Confocal fluorescence images of conventional collagen gel and ZnO-PVP NP-induced collagen gel
Figure 4. 11 SAXS profiles, $I(q)$ versus $q(Å^{-1})$ for collagen solution, conventional fibrous collagen gel and ZnO-PVP NP-induced collagen gel
Figure 4.12 The viscoelasticities of PVP containing conventional collagen gel and gels formed with different ZnO
Figure 4.13 From the individual scattering patterns to obtain the time and spatial resolved optical density plot
Figure 4.14 The spatially resolved optical density plots recorded over 10h in collagen gelation process
Figure 4.15 Schematic illustration to test the effect of Zn ²⁺ and the solubility of the ZnO-PVP-induced gel
Figure 4.16 Colour changes in the gelation processes of the pH indicator containing collagen, triggered by ZnO-PVP NPs
Figure 4.17 Postulated gelation mechanisms and network structures of the ZnO-PVP NPs induced collagen gel and the conventional collagen gel
Figure 4.18 The swelling ratios (in %) of the lyophilized films of collagen and ZnO- PVP NP- induced collagen gels
Figure 4.19 The denaturation temperatures of untreated collagen solution, conventional collagen gel and ZnO-PVP induced collagen gels

List of Tables

Table 1.1 Summary of collagen crosslinking methods and the mechanisms of action7
Table 1.2 Comparing cone-plate geometry and plate-plate geometry. 20
Table 3.1 The rate constants (K _{growth})* of collagen and TiO ₂ -collagen nanocomposites in
the growth phase of gelation (unit: Pa/s)46
Table 3.2 Summarise of the effects of TiO2 NPs on the structures and properties of the collagen gels
Table 4.1 The colours of the pH indicators and their transition pHs. 89
Table 4.2 Comparing the properties and structures of the ZnO-induced collagen gel and
the conventional collagen gel94

Abbreviations

Col	Collagen
CS	Chitosan
DSC	Differential scanning calorimetry
FTIR	Fourier transform infrared spectroscopy
G'	Storage modulus
G _o '	Equilibrium storage modulus
G"	Loss modulus
γc	Critical strain
γ_y	Yield strain
HCl	hydrochloric acid
HOAc	Acetic acid
К	Differential shear modulus
min	Minute
NaOH	Sodium hydroxide
NaCl	Sodium chloride
NP	Nanoparticle
PAA	Poly (acrylic acid)
PBS	Phosphate buffered saline
PVP	Polyvinylpyrrolidone
S	Second
SAED	Selected area electron diffraction

σ Stress

TEM Transmission electron microscopy

- TGA Thermogravimetric analysis
- THF Tetrahydrofuran
- TiO₂ Titanium dioxide
- TiO₂-CS Chitosan coated TiO₂
- TiO₂-PAA PAA capped TiO₂
- TiO₂-UM Surface un-modified TiO₂
- TiCl₄ Titanium tetrachloride
- ZnO Zinc oxide