1,039,826 research outputs found
Recommended from our members
Six month durability of targeted cognitive training supplemented with social cognition exercises in schizophrenia.
Background:Deficits in cognition, social cognition, and motivation are significant predictors of poor functional outcomes in schizophrenia. Evidence of durable benefit following social cognitive training is limited. We previously reported the effects of 70 h of targeted cognitive training supplemented with social cognitive exercises (TCT + SCT) verses targeted cognitive training alone (TCT). Here, we report the effects six months after training. Methods:111 participants with schizophrenia spectrum disorders were randomly assigned to TCT + SCT or TCT-only. Six months after training, thirty-four subjects (18 TCT + SCT, 16 TCT-only) were assessed on cognition, social cognition, reward processing, symptoms, and functioning. Intent to treat analyses was used to test the durability of gains, and the association of gains with improvements in functioning and reward processing were tested. Results:Both groups showed durable improvements in multiple cognitive domains, symptoms, and functional capacity. Gains in global cognition were significantly associated with gains in functional capacity. In the TCT + SCT group, participants showed durable improvements in prosody identification and reward processing, relative to the TCT-only group. Gains in reward processing in the TCT + SCT group were significantly associated with improvements in social functioning. Conclusions:Both TCT + SCT and TCT-only result in durable improvements in cognition, symptoms, and functional capacity six months post-intervention. Supplementing TCT with social cognitive training offers greater and enduring benefits in prosody identification and reward processing. These results suggest that novel cognitive training approaches that integrate social cognitive exercises may lead to greater improvements in reward processing and functioning in individuals with schizophrenia
Cheetah Experimental Platform Web 1.0: Cleaning Pupillary Data
Recently, researchers started using cognitive load in various settings, e.g.,
educational psychology, cognitive load theory, or human-computer interaction.
Cognitive load characterizes a tasks' demand on the limited information
processing capacity of the brain. The widespread adoption of eye-tracking
devices led to increased attention for objectively measuring cognitive load via
pupil dilation. However, this approach requires a standardized data processing
routine to reliably measure cognitive load. This technical report presents
CEP-Web, an open source platform to providing state of the art data processing
routines for cleaning pupillary data combined with a graphical user interface,
enabling the management of studies and subjects. Future developments will
include the support for analyzing the cleaned data as well as support for
Task-Evoked Pupillary Response (TEPR) studies
Neurosystems: brain rhythms and cognitive processing
Neuronal rhythms are ubiquitous features of brain dynamics, and are highly correlated with cognitive processing. However, the relationship between the physiological mechanisms producing these rhythms and the functions associated with the rhythms remains mysterious. This article investigates the contributions of rhythms to basic cognitive computations (such as filtering signals by coherence and/or frequency) and to major cognitive functions (such as attention and multi-modal coordination). We offer support to the premise that the physiology underlying brain rhythms plays an essential role in how these rhythms facilitate some cognitive operations.098352 - Wellcome Trust; 5R01NS067199 - NINDS NIH HH
Resting state connectivity and cognitive performance in adults with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy
Cognitive impairment is an inevitable feature of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), affecting executive function, attention and processing speed from an early stage. Impairment is associated with structural markers such as lacunes, but associations with functional connectivity have not yet been reported. Twenty-two adults with genetically-confirmed CADASIL (11 male; aged 49.8 ± 11.2 years) underwent functional magnetic resonance imaging at rest. Intrinsic attentional/executive networks were identified using group independent components analysis. A linear regression model tested voxel-wise associations between cognitive measures and component spatial maps, and Pearson correlations were performed with mean intra-component connectivity z-scores. Two frontoparietal components were associated with cognitive performance. Voxel-wise analyses showed an association between one component cluster and processing speed (left middle temporal gyrus; peak −48, −18, −14; ZE = 5.65, pFWEcorr = 0.001). Mean connectivity in both components correlated with processing speed (r = 0.45, p = 0.043; r = 0.56, p = 0.008). Mean connectivity in one component correlated with faster Trailmaking B minus A time (r = −0.77, p < 0.001) and better executive performance (r = 0.56, p = 0.011). This preliminary study provides evidence for associations between cognitive performance and attentional network connectivity in CADASIL. Functional connectivity may be a useful biomarker of cognitive performance in this population
Investigation of sequence processing: A cognitive and computational neuroscience perspective
Serial order processing or sequence processing underlies
many human activities such as speech, language, skill
learning, planning, problem-solving, etc. Investigating
the neural bases of sequence processing enables us to
understand serial order in cognition and also helps in
building intelligent devices. In this article, we review
various cognitive issues related to sequence processing
with examples. Experimental results that give evidence
for the involvement of various brain areas will be described.
Finally, a theoretical approach based on statistical
models and reinforcement learning paradigm is
presented. These theoretical ideas are useful for studying
sequence learning in a principled way. This article
also suggests a two-way process diagram integrating
experimentation (cognitive neuroscience) and theory/
computational modelling (computational neuroscience).
This integrated framework is useful not only in the present
study of serial order, but also for understanding
many cognitive processes
Smoking, childhood IQ and cognitive function in old age
Objectives: To examine the association between smoking history and cognitive function in old age, and whether it remains after controlling for childhood cognitive ability (IQ) and adult socioeconomic status (SES).Methods: In the Lothian Birth Cohort 1936 Study, 1080 men and women, who previously participated in a nationwide IQ-type test in childhood, were followed up at age 70. The associations between smoking history and age 70 IQ, general cognitive ability (g), processing speed, memory, and verbal ability were assessed.Results: Lower childhood IQ was associated with a higher risk of becoming a smoker and continuing to smoke in late life, and with reduced lung function (FEV1) in late life. Current smokers scored significantly lower than ex-smokers and never smokers on tests of age 70 IQ general cognitive ability, and processing speed, but not memory or verbal ability. After controlling for childhood IQ and SES, current smoking at age 70 (but not pack years of smoking) was associated with impairments in general cognitive ability and processing speed.Conclusion: Smoking in old age makes a small, independent contribution to cognitive performance in old age. (c) 2012 Elsevier Inc. All rights reserved.</p
Temporal regularity effects on pre-attentive and attentive processing of deviance
Temporal regularity allows predicting the temporal locus of future information thereby potentially facilitating cognitive processing. We applied event-related brain potentials (ERPs) to investigate how temporal regularity impacts pre-attentive and attentive processing of deviance in the auditory modality. Participants listened to sequences of sinusoidal tones differing exclusively in pitch. The inter-stimulus interval (ISI) in these sequences was manipulated to convey either isochronous or random temporal structure. In the pre-attentive session, deviance processing was unaffected by the regularity manipulation as evidenced in three event-related-potentials (ERPs): mismatch negativity (MMN), P3a, and reorienting negativity (RON). In the attentive session, the P3b was smaller for deviant tones embedded in irregular temporal structure, while the N2b component remained unaffected. These findings confirm that temporal regularity can reinforce cognitive mechanisms associated with the attentive processing of deviance. Furthermore, they provide evidence for the dynamic allocation of attention in time and dissociable pre-attentive and attention-dependent temporal processing mechanisms
- …
