

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Cheetah Experimental Platform Web 1.0: Cleaning Pupillary Data

Zugal, Stefan; Pinggera, Jakob; Neurauter, Manuel; Maran, Thomas; Weber, Barbara

Published in:
ArXiv

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Zugal, S., Pinggera, J., Neurauter, M., Maran, T., & Weber, B. (2017). Cheetah Experimental Platform Web 1.0:
Cleaning Pupillary Data. ArXiv.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/84004826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/cheetah-experimental-platform-web-10-cleaning-pupillary-data(0ab82e1b-9c56-480c-9f93-e2ab2d11e1ed).html

Cheetah Experimental Platform Web 1.0:
Cleaning Pupillary Data

Stefan Zugal1, Jakob Pinggera1, Manuel Neurauter1, Thomas Maran1, and
Barbara Weber1,2

1 University of Innsbruck, Austria
Firstname.Lastname@uibk.ac.at

2 Technical University of Denmark, Denmark
bweb@dtu.dk

Abstract. Recently, researchers started using cognitive load in various
settings, e.g., educational psychology, cognitive load theory, or human–
computer interaction. Cognitive load characterizes a tasks’ demand on
the limited information processing capacity of the brain. The widespread
adoption of eye–tracking devices led to increased attention for objectively
measuring cognitive load via pupil dilation. However, this approach re-
quires a standardized data processing routine to reliably measure cog-
nitive load. This technical report presents CEP–Web, an open source
platform to providing state of the art data processing routines for clean-
ing pupillary data combined with a graphical user interface, enabling
the management of studies and subjects. Future developments will in-
clude the support for analyzing the cleaned data as well as support for
Task–Evoked Pupillary Response (TEPR) studies.

Keywords: cheetah experimental platform, pupillometry, eye tracking,
cognitive load

1 Introduction

In recent years, research started to focus on cognitive load in various settings such
as in educational psychology [1], cognitive load theory [2], or human computer
interaction [3]. In general, cognitive load characterizes the demands of tasks im-
posed on the limited information processing capacity of the brain [4]. Cognitive
load therefore represents an individual measure depending on available resources
interacting with given tasks on a subjective level. Four main approaches to mea-
sure cognitive load are common in research. For a detailed overview of cognitive
load measures see [5].

Subjective measures
Subjects are ranking their experienced level of cognitive load using rating
scales.

Performance measures
For example task performance of secondary tasks, critical errors, task com-
pletion times, or speed.

ar
X

iv
:1

70
3.

09
46

8v
1

 [
cs

.H
C

]
 2

8
M

ar
 2

01
7

2 S. Zugal, J. Pinggera, M. Neurauter, T. Maran, Barbara Weber

Physiological measures
Such as heart rate or heart rate variability, galvanic skin response, or pupil
dilation.

Behavioural measures
Observing behavioural patterns such as mouse-click events or linguistic pat-
terns.

The easier access to eye-tracking devices led to increasing attention for mea-
suring cognitive load via pupil dilation in recent years [5]. In general, pupillary
responses can have a variety of causes such as reflex reaction based on light
exposure [6] or sexual stimulation [7]. Additionally, pupil dilation also is caused
by cognitive load as shown by Beatty [8], who identified pupil dilation to be a
reliable indicator of processing load during tasks. Flowing this insights, several
studies utilized pupil dilation measurements to assess cognitive load in various
settings (e.g. [3,9,10]).

Pupil dilation data however, needs to run through several cleaning and filter-
ing routines to reliably measure cognitive load [11]. To the best of our knowledge,
no common data cleaning and filtering software package is available, resulting
in a variety of different techniques and levels of preprocessing pupillary data.
Therefore, this technical report describes a state of the art preprocessing rou-
tine for pupillary data. To support the execution of the described preprocessing,
we introduce Cheetah Experimental Platform Web 1.0 (CEP–Web), following
and enhancing the work presented in [12,13].

Following a generic approach, eye-tracking data in stimulus response setting
common in psychology as well as data gathered in long running tasks can be
prepared for following analyses using CEP–Web. Due to the high amounts of data
gathered by eye-tracking systems working at high sampling rates (e.g. 300 Hz for
the Tobii TX300) the tool is installed on a server at the University of Innsbruck
and therefore able to perform the needed calculations without imposing load on
researchers IT components. Interested researcher might also obtain the source
code of CEP–Web via our GitLab page3. Along with the possibility of calculating
the cognitive load within data sets, the opportunity to visualize both, the raw
data and the processed data is provided. The visualization of the data allows to
verify the changes during the preprocessing and offers a possibility to examine
the user’s cognitive load trend directly.

We hope providing this infrastructure is aiding the usage of pupil dilation
data to assess cognitive load in various fields of research by lowering the demands
of needed computing performance and programming skills for researchers. This
should lead to more research utilizing cognitive load in various scientific fields,
providing deeper insights into human-computer interaction, software design, or
design research.

In the remainder of the report is structured as follows. Section 2 describes the
CEP–Web’s analysis workflow and the available pupillometric cleaning routines.
Section 3 presents the technical infrastructure of CEP–Web. Section 4 outlines

3 https://git.uibk.ac.at/cheetah-web-group/cheetah-web

Cheetah Experimental Platform Web 1.0 3

related work and Section 5 concludes the technical report with a brief summary
and outlook on future extensions of CEP–Web.

2 Analysis workflow

This section describes the workflow and corresponding features for analyzing
pupillometric data. Particularly, experimental data is organized in CEP–Web as
illustrated in Figure 1: the for each study to be analyzed using CEP–Web, one
or more subjects may be assigned. To each subject, in turn, multiple files can
be attached—ranging from raw input data exported from the eye tracker and
associated video data as well as data that was already processed in CEP–Web.

Subject 1

Subject 2

Subject n

...
Study

Pupillometric data

Video

Video

Pupillometric data

Pupillometric data (cleaned)

Fig. 1. Study with subjects and files

Based on this structure, we recommend the following workflow for the anal-
ysis of pupillometric data within CEP–Web:

– Create study and subject: As first step, we recommend to create a study for
the experiment to be analyzed and also to create all subjects that partici-
pated in the study.

– Upload raw data: In the second step, export the data from the eye tracker
and upload it to CEP–Web. To help with the organization of files, it is
mandatory to assign each file to a subject; please note that a subject may
have multiple files assigned.

– Cleaning: After all data is uploaded, CEP–Web provides a number or filters
for processing and cleaning pupillometric data.

– Data inspection: To visually inspect whether the cleaning achieved the de-
sired results, CEP–Web provides the possibility to inspect raw and cleaned
data by visualizing the data as graphs.

– Pupil size calculation: CEP–Web 1.0 provides an initial, rudimentary imple-
mentation for computing the average pupil sizes.

In the following, we detail each of the steps. Particularly, Section 2.1 covers
study and subject management, Section 2.2 explains the management of data
files, whereas Section 2.3 details the cleaning of pupillometric data. Finally, Sec-
tion 2.4 illustrates how CEP–Web supports the visual inspection of raw and
cleaned data.

4 S. Zugal, J. Pinggera, M. Neurauter, T. Maran, Barbara Weber

2.1 Study and subject management

The management of subjects is the first step for analyzing data in CEP–Web. In
particular, for each experiment that should be analyzed, we recommend to create
an individual study and assign all subjects that participated in the study. To
facilitate the creation of subjects, an import feature was implemented allowing
the creation of several subjects by importing them using a comma–separated
values (csv) file.

2.2 Data management

The file management of CEP–Web allows for uploading and administering files.
Even though the naming of files is up to the user, for the purpose of maintain-
ability, we recommend to follow a certain pattern for naming files:

subject id@study.extension

Thereby, subject id refers to the identifier of the subject, e.g., subject number,
study refers to the study the subject participating and extension to the extension
of the file. In this sense, pupillometric data of subject number 16 participating
in study modeling experiment should be named as follows:

16@modeling experiment.tsv

By adhering to this naming convention, the files will be automatically mapped
to the previously created subjects. Otherwise, the mapping of file to subject has
to be established manually.

2.3 Pupillometric cleaning

For the cleaning of pupillometric data, which is the centerpiece of CEP–Web
1.0, we have implemented a series of filters. Basically, a filter takes pupillometric
data—left pupil size, right pupil size and timestamp—as input and applies a set
of transformation steps on this data. The output provided by one filter can then
be directly fed into the next filter, allowing for establishing a filtering chain.
Being able to chain filters is of particular interest, since each filter serves a
particular purpose in the process of cleaning pupillometric data. Certain filters
remove data points, e.g., by removing outliers, whereas other filters are designed
to interpolate missing values. In other words, typically filters removing data are
applied before filters that interpolate data, since generally the output of the
cleaning process should be a continuous series of data without missing values.

Even though CEP–Web allows for freely combining filters, it should be em-
phasized that not all combination of filters will lead to satisfying results. For
instance, applying the Butterworth filter to data that includes missing values,
will lead to filtering artifacts. Contrariwise, the blink detection filter will not
work properly if missing values—which are used for identifying blinks—have
been linearly interpolated before. Therefore, we recommend to apply filters in
the following order:

Cheetah Experimental Platform Web 1.0 5

– Pupil substitution (optional): Basic interpolation filter for pupil sizes.
– Gazepoint substitution (optional): Basic interpolation filter for gaze points.
– Blink detection: Detect and remove blink artifacts.
– Standard deviation: Remove outliers identified by statistics.
– Linear interpolation: Linearly interpolate missing values.
– Butterworth Filter : Applies a third order lowpass Butterworth filter

For most purposes, the ordering described above will lead to the best results.
However, in certain scenarios, it may be useful to shift or omit specific filters.
To understand, which filters can be applied for which purpose, we describe all
filters provided by CEP–Web in the following.

Pupil substitution. The pupil substitution filter is one of the basic filters for
interpolating missing data and can be applied for binocular eye trackers only.
The idea behind this filter is to substitute missing values from one pupil by the
value measured for the other pupil. Hence, the left pupil size is substituted with
the right pupil size, of value of the left pupil size is missing and the value of the
right pupil size is not missing:

filter(valueleft) =

{
valueright if missing(valueleft) ∧ !missing(valueright)

valueleft else

(1)
Analogous, the right pupil size is replaced with the left pupil size, if the value

of the right pupil size is missing and the value of the left pupil size is not missing:

filter(valueright) =

{
valueleft if missing(valueright)

valueright else
(2)

We would like to mention at this point that the substitution filter should be
applied with care, since the size of the left and right pupil may differ considerably.

Gazepoint substitution. Similar to the pupil substitution filter, the gaze
point substitution filter will replace gaze points, if possible. In particular, we
consider a gaze point with screen coordinates (x, y) missing if either the value
of x (horizontal position in pixel) or y (vertical position in pixel) is missing:

missing(x, y) =

{
true if x missing ∨ y missing
false else

(3)

Based on this definition of missing, we substitute the left gaze point with the
right gaze point, if the value for the left gaze point is missing and the value for
the right gaze point is not missing:

filter(gazeleft) =

{
gazeright if missing(gazeleft) ∧ !missing(gazeright)

gazeleft else
(4)

6 S. Zugal, J. Pinggera, M. Neurauter, T. Maran, Barbara Weber

Analogous, we substitute the right gaze point with the left gaze point, if the
right gaze point is missing and the left gaze point is not missing:

filter(gazeright) =

{
gazeleft if missing(gazeright) ∧ !missing(gazeleft)

gazeright else
(5)

Standard deviation. The assumption behind the standard deviation filter is
that all values that differ more than 3 times from the mean value, should be
considered outliers and are removed. More formally:

filter(value) =

missing for value > x̄+ 3 ∗ σ
missing for value < x̄− 3 ∗ σ
value else

(6)

Fig. 2. Raw data Fig. 3. After applying standard devia-
tion filter

To illustrate the application of the standard deviation filter, consider the
graphs in Figures 2 and 3. Particularly, the graph in Figure 2 shows a distortion
to an extent that the visualization engine of CEP–Web could not print the
graph anymore (all filter examples shown in this document are screenshots from
CEP–Web). After applying the standard deviation filter, these anomalies are
removed—the resulting missing values could then be substituted by a linear
interpolation filter in a second step.

Blink detection. The detection of blinks is one of the central aspects when
cleaning pupillometric data. Since the blink itself is not an on–off event, but
rather a process of closing and opening the eyelid, artifacts are likely to occur
shortly before and after the blink. To compensate for these artifacts, CEP–Web
implements the blink detection filter, which, based on a heuristic of missing
values and gaze position, will detect and clip out blinks (for details, please refer
to [11]). To illustrate the application of the blink detection filter, consider the

Cheetah Experimental Platform Web 1.0 7

Figures 4 and 5. As indicated before, the filter recognizes the series of missing
data as blink and clips out all values that were measured during blink onset and
blink ending.

Fig. 4. Raw data Fig. 5. After applying blink detection

In case the pupil substitution filter or the gaze point substitution filter is
intended to be applied before the blink detection filter, we strongly recommend to
apply these filters only in combination. As described in [11], for detecting blinks,
the blink detection filter takes into account whether pupil sizes are available and
whether a valid gaze point position could be measured. Hence, the filter will
only work properly, if both pupil sizes and gaze points have been substituted.
To clarify, the application of pupil substitution filter or gaze point substitution
filter is not mandatory, but they should only be applied in combination when
the blink detection filter should be applied as well.

Linear interpolation. Whenever eye trackers are used for collecting pupillo-
metric data, data loss is unavoidable—simply due to the fact that the eye tracker
cannot assess the pupil during blinks. This is particularly problematic since cer-
tain filters depend on continuous data, such as the the Butterworth filter. To
deal with this situation, CEP–Web provides a filter for linearly interpolating
missing data. Particularly, for a series of missing values, where values is the last
non-missing value at time times and valuee is the first non-missing value after
a series of missing values with the corresponding timestamp timee, CEP–Web
will linearly interpolate the missing values as follows:

value(time) = values + (valuee − values) ∗
time− times
timee − times

(7)

Fig. 6. Raw data Fig. 7. Linearly interpolated data

8 S. Zugal, J. Pinggera, M. Neurauter, T. Maran, Barbara Weber

To illustrate linear interpolation in CEP–Web, consider Figures 6 and 7.
Clearly, Figure 6 is affected by missing data—in this particular example caused
by a blink. After applying the filter, the missing data is linearly interpolated,
resulting in continuous data, as shown in Figure 7.

When applying the linear interpolation filter, we strongly recommend to apply
the blink detection filter first. In particular, values measured during blinks are
error–prone due the eyelid being halfway covered, hence the linear interpolation
filter should not use these values as start/end points for linear interpolation.
Rather, values that can be considered valid, i.e., after the pupil is fully visible
and the eye tracker can assess the pupil size correctly, should be used as start/end
points for linear interpolation. For achieving this, the blink detection filter can
be used, since it will remove values that were measured during a blink, hence
removing values that were measured when the eyelid was closing/opening.

Similarly, the eye tracker may deliver spurious measurements during blinks,
i.e., the eye tracker incorrectly detects the pupil. Again, respective values must
be assumed to be invalid and should not be used for linear interpolation—also
for this reason, we strongly recommend to apply the blink detection filter before
running the linear interpolation.

Butterworth filter. CEP–Web provides a third order lowpass Butterworth
filter for data cleaning through an open–source library for digital signal process-
ing4. Generally, lowpass filters will filter out high frequencies, but do not affect
lower frequencies. For data cleaning, lowpass filters are typically used to filter
out measurement artifacts such as white noise and are thus used for smoothening
data. To illustrate the effect of applying a lowpass filter, consider the illustra-
tions shown in Figures 8 and 9. The raw data shows typical signs of white noise,
whereas the filtered data exhibits the same basic features, but is apparently
smoothened.

Fig. 8. Raw data Fig. 9. Filtered with Butterworth

Even though a lowpass Butterworth filter can be used for processing mea-
surement artifacts, its application introduces a phase response to the filtered
signal—in other words, this feature of Butterworth causes the filtered signal to
be shifted towards the past. To compensate for this phase response, CEP–Web
calculates the expected phase response and automatically re–shifts the processed

4 http://www.source-code.biz/dsp/java

http://www.source-code.biz/dsp/java

Cheetah Experimental Platform Web 1.0 9

signal so that the phase response is equalized. In particular, the phase shift of
a third order lowpass Butterworth filter (φ) can be calculated based upon the
angular frequency (w) as follows:

φ(w) = −tan−1

(
2w − w3

1− 2w2

)
(8)

2.4 Data inspection

As described in Section 2.3, filters need to be applied with care and the effect of
applying a filter is not always obvious. Similarly, it is difficult to assess whether
the data being analyzed behaves the way it was expected for the experiment or
whether it contains unforeseeable artifacts. To counteract this problem, CEP–
Web provides the possibility of visualizing pupillometric data in the form of
graphs, as illustrated in Figure 10. In this particular example, the user chose
to visualize raw data (blue line) to compare them with the cleaned results (red
line); on the x-axis the duration is shown in minutes:seconds, on the y-axis the
pupil diameter is shown in mm. Furthermore, it can be seen that the cleaning
resulted in a smoothening of the graph around 1:51 and the removal of a blink
around 1:54.

Fig. 10. Visualization of raw data (blue) and cleaned data (red)

3 Technical infrastructure

This section explains on the technical infrastructure provided by CEP–Web.
Section 3.1 focuses on the technical challenges connected with processing large
amounts of data and describes in Section 3.2 how CEP–Web tackles these chal-
lenges and supports the analysis workflow described in Section 2.

10 S. Zugal, J. Pinggera, M. Neurauter, T. Maran, Barbara Weber

3.1 Technical Challenges

Besides typical challenges of software, such as maintainability, quality and us-
ability, CEP–Web needs to address two challenges particular to the processing
of pupillometric data:

Data volume. Obviously, the amount of data to be processed strongly de-
pends on the extend of data provided by the eye tracker. This, in turn, is typi-
cally mainly influenced by the sampling rate, data fields exported from the eye
tracker, as well as the format used for export. First, regarding the sampling rate,
modern eye trackers work with a sampling rate of at least 60Hz, i.e., producing
60 data points per second. Depending on the particular field of application, sam-
pling rates of up to 1000Hz are common as well. CEP–Web does not make any
assumptions about sampling rates and thus supports arbitrary sampling rates.
Second, regarding the data fields exported by the eye tracker, it mainly depends
on the eye tracking software provided with the eye tracker. Even though the
export may be configured to that only necessary fields will be exported by the
eye tracking software, for convenience or simplicity often all available data is
exported. Here, the data fields required by CEP–Web depend on the particular
application. For instance, for rather simple filters such as standard deviation,
timestamps as well as the pupillometric data are sufficient. However, for more
complex filters, such as the blink detection, additionally gaze positions may be
required. CEP–Web does not require the user to specify theses data fields up–
front, but will prompt the user as soon as they are required. Third, regarding
the data format, compressed or proprietary formats may provide a more suc-
cinct representation of data. Since compressed or proprietary formats tend to
compromise interoperability, in CEP–Web, we rely on tabular separated value
(.tsv) files only.

Given our typical usage scenario with Tobii X300 and considering a sampling
rate of 300Hz, one hour of eye tracking will produce about 430MB of data. In
the light of our recent study with 115 subjects and eye tracking sessions between
30 minutes and more than 1 hour, 36.34 GB of data needed be processed. Given
these numbers, it becomes evident that more elaborated approaches are required
to handle this amount of data.

Processing speed. Closely connected to the volume of data is the time and
processing power required for analyzing respective data. Apparently, the more
data needs to be processed and the more complex the computations to be con-
ducted, the longer the data analysis will take. Given the amount of data at
hand, optimizing the individual computations (e.g., cleaning or filtering) is not
enough to keep the processing duration at an acceptable level. Rather, it is of
vital importance to provide support for the parallel processing of computation
for providing reasonable computation times.

To exemplify the need for parallel processing, consider our recent study in
which the have tracked 115 subjects with a sampling rate of 300Hz, resulting in

Cheetah Experimental Platform Web 1.0 11

a data set with 96,676,561 data points. For each of these data points, we were
required to run the pupil substitution filter, standard deviation filter, linear
interpolation filter as well as Butterworth filter. Apparently, running this kind
of analysis on a single CPU will not be enough to provide results in acceptable
time.

3.2 Software architecture

To address the described challenges with respect to data volume and process-
ing speed, we have developed CEP–Web that allows for data inspection in real-
time, whenever possible, but also provides the possibility to schedule long–lasting
tasks in the background. Particularly, as described in the following, we provide
a worker infrastructure for parallelizing long–lasting tasks, as well as means for
pre–processing data for real–time analysis.

Worker infrastructure. Even though the clock speed of modern CPUs is cur-
rently restricted by physical limits and cannot be expected to be increased any
further, modern computers provide performance gains through the parallel oper-
ation of several CPU cores. However, to harness the power of parallel processing,
the software needs to provide the respective infrastructure as well. In CEP–Web,
we employ the thread pool pattern (also known as replicated workers or worker–
crew model) [14] to parallelize the long–lasting computations. In particular, we
seek to encapsulate each task in the form of an independent worker, as illus-
trated in Figure 11. Therein, the task of Worker 1 is to read an input file, apply
a set of n filters to the input file and finally write the processed file as output
of the worker. In parallel to Worker 1, several other workers may be processing
data as well—again, each worker will encapsulate the work to be done and can
be run as independent computation.

Filter 1 Filter 2 Filter n...

Worker 1 (Pupillometry Cleaner)

Input file Output file

Worker 2

Worker n

...

Fig. 11. Worker infrastructure

12 S. Zugal, J. Pinggera, M. Neurauter, T. Maran, Barbara Weber

The crucial part of this worker infrastructure is the scheduling of work to
be conducted. Too few parallel workers will result in a low utilization of CPUs,
while a too high number of parallel workers will negatively impact performance
when several workers need to share on CPU. In CEP–Web we decided to allow
exactly one worker on single–core machines. On multi–core machines, we reserve
one core for housekeeping work and use the remaining cores for workers, i.e., the
number of workers in parallel is the number number of CPU cores - 1. Workers
that cannot be started yet due to this restriction are kept in the worker queue
and will be started as soon as one of the active workers has finished.

Preparation of data for real–time analysis. As described in Section 2,
CEP–Web also provides the possibility to inspect raw as well as processed data
in real–time. As described in Section 3.1, particularly eye trackers with high
sampling rates easily produces data files are several hundreds of MB large. Even
though modern hard drives can easily store and read this amount of data, it still
requires the user to wait until the system has loaded and processed the file. To
minimize this waiting time and enable real–time data inspection, data files are
optimized along three stages:

– Uncompressed data. Data that is uploaded by the user or being stored from a
worker as result of applying filters typically contains data fields that are not
necessary for real–time data inspection and implies that unnecessary data
is loaded from the hard disk. For performance reasons, CEP–Web does not
provide real–time data inspection for these files.

– Compressed data. To make uncompressed data amenable for analysis, CEP–
Web strips of all unnecessary data from uncompressed files and stores these
compressed files in new, compressed data files. Since this typically involves
reading, processing and storing several hundreds of MBs, the compressing of
data is executed as a task within the worker infrastructure.

– Cached data. Even though compressed data can be read faster than uncom-
pressed data, the waiting times for disk I/O operations are still to large
for ensuring acceptable waiting times during real–time analysis. To finally
achieve acceptable waiting times, CEP–Web holds the data currently un-
der analysis in memory to allow for instant access. Hence, whenever a data
file should be analyzed, its content is loaded into memory, imposing a one-
time waiting time. For the remainder of the analysis, data will be read from
memory, thereby miniming waiting times.

3.3 Implementation

CEP–Web is implemented as typical web application on top of Tomcat on the
server side and relying on AngularJS on the client side. In the following, we will
describe details that may be interesting for readers interested in extended CEP–
Web. For a more up–to–date technical description of CEP–Web, please visit our
GitLab page5.

5 https://git.uibk.ac.at/cheetah-web-group/cheetah-web

Cheetah Experimental Platform Web 1.0 13

Server side. CEP–Web builds upon Tomcat 6 and Java 7. For storing data,
we rely on MySQL 5.6; access to the database is provided by the MySQL JDBC
driver. For migrating our database, we rely on LiquiBase; respective changelogs
are available in our GitLab account. CEP–Web does not have any operating
system depending components and has so far been used on Windows 10 and
CentOS 6.7.

Client side. For the client side, we rely on AngularJS and Bootstrap. Hence,
CEP–Web generally supports all our modern browsers—best results can be ex-
pected with Google Chrome and Mozilla Firefox.

3.4 Hardware setup

The minimum requirements on hardware are difficult to describe, since they
heavily depend on the data to be analyzed and the filters that should be applied.
From our experience on analyzing data, we know:

– The need of memory for cleaning data in parallel workers does not increase
linearly with each worker. Rather, the first worker will require a proportion-
ally larger share of memory than any additional worker. Technically, this
behaviour can be explained by the effect of sharing String objects (String
pooling) that is performed by Java, i.e., identical Strings are not recreated,
but rather shared throughout the virtual machine. Hence, the first worker
will fill the String pool—requiring proportionally more memory—whereas
any additional worker will reuse the Strings from the pool.

– For our recent study, we cleaned data with up to 500MB on a machine with
24 GB RAM and 12 cores. As described in Section 3.2, on this setup, only 11
cores will be used at the same time for cleaning, i.e., at most 11 workers will
run in parallel. For this amount of workers, the memory was easily sufficient
for cleaning the data and computing the average pupil size.

4 Related work

In [10] several preprocessing steps are described in a generic way, such as blink
detection, linear interpolation in blink phases, and removing high frequency ar-
tifacts. All of those are addressed by CEP–Web as described in Section 2. The
eye blink detection approach presented in [11] and a corresponding handling
of blinks during eye tracking is implemented in CEP–Web. To remove high fre-
quency artifacts we are following [15] by using a third order lowpass Butterworth
filter also described in Section 2.

For an exhaustive overview regarding the theory for cognitive load, it’s mea-
surement and examples for research please see [5].

14 S. Zugal, J. Pinggera, M. Neurauter, T. Maran, Barbara Weber

5 Summary

This technical report provided a brief overview of the current capabilities of
CEP–Web in terms of managing, cleaning, and visualizing pupillometric data.
More specifically, we presented the handling of studies and subjects and their
associated pupillometric data. Further, the available filters of CEP–Web are pre-
sented. This way, users are capable of performing state of the art data processing,
even on large numbers of files. The integrated visualization tool allows users to
inspect their data prior and after cleaning to ensure the correct application of
the filters.

Future developments for CEP–Web will include the evaluation of pupil dila-
tion during tasks and sub–tasks. For this, we are planning an infrastructure that
splits the data stream into smaller chunks and provides capabilities for calculat-
ing and reporting mean, median, and/or standard deviation. In a similar vein,
we intend to include support for facilitating the analysis of Task–Evoked Pupil-
lary Response (TEPR) studies. For this, we plan to integrate the definition of
data processing routines that include not only cleaning, but also partitioning the
data into trials and evaluating the pupillary responses after the stimulus. The
data will be aggregated and presented for all participants of the study, allowing
a more efficient data analysis.

References

1. Paas, F., Renkl, A., Sweller, J.: Cognitive Load Theory and Instructional Design:
Recent Developments. Educational Psychologist 38 (2003) 1–4

2. Sweller, J., Ayres, P., Kalyuga, S.: Cognitive Load Theory. Cognitive Load Theory
1 (2011) 57–69

3. Bailey, B.P., Iqbal, S.T.: Understanding changes in mental workload during execu-
tion of goal-directed tasks and its application for interruption management. ACM
Transactions on Computer-Human Interaction 14 (2008) 1–28

4. Wickens, C.D., Hollands, J.G.: Engineering Psychology and Human Performance.
4 edn. Pearson (2012)

5. Chen, F., Zhou, J., Wang, Y., Yu, K., Arshad, S.Z., Khawaji, A., Conway, D.: Ro-
bust Multimodal Cognitive Load Measurement. Springer International Publishing
(2016)

6. Ellis, C.J.: The pupillary light reflex in normal subjects. The British journal of
ophthalmology 65 (1981) 1–28

7. Hess, E.H., Polt, J.M.: Pupil size as related to interest value of visual stimuli.
Science (New York, N.Y.) 132 (1960) 349–350

8. Beatty, J.: Task-evoked pupillary responses, processing load, and the structure of
processing resources. Psychological bulletin 91 (1982) 276–292

9. Hayes, T.R., Petrov, A.A.: Pupil Diameter Tracks the Exploration-Exploitation
Trade-off during Analogical Reasoning and Explains Individual Differences in Fluid
Intelligence. J Cogn Neurosci 28 (2016) 308–318

10. Koelewijn, T., Shinn-Cunningham, B.G., Zekveld, A.A., Kramer, S.E.: The pupil
response is sensitive to divided attention during speech processing. Hearing Re-
search 312 (2014) 114–120

Cheetah Experimental Platform Web 1.0 15

11. Pedrotti, M., Lei, S., Dzaack, J., Rötting, M.: A data-driven algorithm for of-
fline pupil signal preprocessing and eyeblink detection in low-speed eye-tracking
protocols. Behavior Research Methods 43 (2011) 372–383

12. Weber, B., Neurauter, M., Pinggera, J., Zugal, S., Furtner, M., Martini, M., Sachse,
P.: Measuring Cognitive Load During Process Model Creation. In: Proc. Neu-
roIS’15. (2015) 129–136

13. Neurauter, M., Pinggera, J., Martini, M., Burattin, A., Furtner, M., Sachse, P.,
Weber, B.: The Influence of Cognitive Abilities and Cognitive Load on Business
Process Models and Their Creation. In: Proc. NeuroIS’15. (2015) 107–115

14. Garg, R.P., Sharapov, I.: Techniques for Optimizing Applications - High Perfor-
mance Computing. Prentice-Hall (2002)

15. Jiang, X., Zheng, B., Bednarik, R., Atkins, M.S.: Pupil responses to continuous
aiming movements. International Journal of Human-Computer Studies 83 (2015)
1–11

	Cheetah Experimental Platform Web 1.0: Cleaning Pupillary Data

