108 research outputs found

    Performance Analysis of a Claw Pole PM Motor

    Full text link
    This paper presents the performance analysis of a three-phase three-stack permanent magnet (PM) claw pole motor by using an improved phase variable model, which has been developed for accurate and efficient performance simulation of PM brushless dc motors. The improved model can take into account the effect of magnetic saturation and rotor position dependence of key parameters including back electromagnetic force, winding inductance, cogging torque and core loss, which are obtained from time-stepping nonlinear magnetic field finite element analysis (FEA). The presented model has been implemented in Simulink environment and employed to simulate the dynamic and steady-state performance of the three-phase three-stack PM claw pole motor with soft magnetic composite stator. Parameter computation and performance simulation are validated by experiments on the motor prototype

    Design of SMC motors using hybrid optimization techniques and 3D FEA with increasing accuracy

    Full text link
    This paper presents the design and analysis of a three-phase three-stack permanent magnet claw pole motor with soft magnetic composite (SMC) stator core. 3D finite element analysis (FEA) of magnetic field is performed to accurately calculate key motor parameters and performance. Combined optimization techniques and 3D FEA with increasing accuracy are applied to effectively reduce the computational time. The designed motor has been fabricated and tested. The theoretical calculations are validated by the experimental results on the prototype

    Influence of inductance variation on performance of a permanent magnet claw pole soft magnetic composite motor

    Get PDF
    Winding inductance is an important parameter in determining the performance of electrical machines, particularly those with large inductance variation. This paper investigates the influence of winding inductance variation on the performance of a three-phase three-stack claw pole permanent magnet motor with soft magnetic composite (SMC) stator by using an improved phase variable model. The winding inductances of the machine are computed by using a modified incremental energy method, based on three-dimensional nonlinear time-stepping magnetic field finite element analyses. The inductance computation and performance simulation are verified by the experimental results of an SMC claw pole motor prototype

    Design of Powder Core Motors

    Get PDF
    The goal of the study presented in this thesis is to evaluate the advantages and drawbacks of using powder technology in the design of the iron core of small claw-pole electric motors. The use of soft magnetic composites (SMC) and compaction technology allows the creation of complex 3D iron cores. The additional dimension opens for new solutions of the electromechanical energy conversion. A claw-pole motor among the transversal flux machines that has particularly high specific torque is in the focus of research interest. Generally, as the iron core can be more complicated, the winding is chosen to be simpler in the powder core motors. The thesis focuses on the machine design of a single-phase and a two-phase low-power claw-pole motor. The predicted results compare well with measurements of the prototype motors. The motor design process in this thesis uses a magnetic equivalent circuit (MEC) model of the outer-rotor claw-pole motors that is accurate enough to describe the physics of the electromagnetic conversion. Additional equivalent circuits are made to evaluate the mechanic and thermal loading of the machines. The outcome of the equivalent circuit models is enough to estimate roughly the optimal size of the motor and the motor output according to the materials selected. After the rough design process, which is based on equivalent circuits, is finished, a series of FE magnetostatic analyses are made in order to evaluate the static characteristics of the motors, to specify the magnetization losses and to carry out a sensitivity study for the proposed size of the motors. Finally, the magnetic, mechanic and thermal design is analyzed dynamically and statically by the use of coupled multiphysics. The task of the coupled multiphysics is to find out the cooling capability and the thermal limit of the motor as well as the mechanic stress in the motor parts due to magneto-mechanic loading. It is discussed how the discrepancy between the calculated and measured cogging torque depends on the fineness of the 3D FE air gap mesh. Iron loss estimation based on the results of the FE-analysis is made taking the local rotation, and not only pulsation, of the magnetic flux into consideration. It is shown that the loss coefficients in the material model must be adapted to account for flux rotation. A part from the output of the machine as an electromechanical energy converter is their controllability in the electric drive system. Based on the static characteristics, which are calculated in the FE-analysis and verified in prototype measurements, a tailor made control method is developed for the machines designed. Results are presented of extensive simulations and experimental verifications of the proposed control strategy and power electronic circuitry. The high-speed four-pole single-phase motor shows satisfactory results. The other motor, which has 20 poles and two phases, has a main weakness in its complex assembling and a large cogging torque

    Design of a High Speed Claw Pole Motor with Soft Magnetic Composite Core

    Full text link

    Effects of armature reaction on the performance of a claw pole motor with soft magnetic composite stator by finite-element analysis

    Full text link
    We investigated the effects of armature reaction on the performance of a three-phase three-stack claw pole motor with soft magnetic composite stator core by using three-dimensional finite-element analysis (FEA), which is an effective approach to accurately compute the parameters and performance such as the back electromotive force (EMF), core losses, and winding inductance at various saturation levels. The motor is rated as 500 W at 1800 rpm when the stator current is 4.1 A, driven by a sensorless brushless DC scheme. Because of the armature reaction, the back EMF produced by the rotor permanent magnets and the developed torque is reduced by about 3.3% at the rated load, and the core losses increase drastically by 41% from no-load to full-load. The winding inductance is computed with different loads at different rotor angles. © 2007 IEEE

    Design and analysis of a high-speed claw pole motor with soft magnetic composite core

    Full text link
    Soft magnetic composite (SMC) material is formed by surface-insulated iron powder particles, generating unique properties like magnetic and thermal isotropy, and very low eddy currents. This paper presents the design and analysis of a high-speed claw pole motor with an SMC stator core for reducing core losses and cost. The analyses of magnetic and thermal fields are conducted based on a comprehensive understanding of the property of SMC materials. The 3-D finite-element analysis (FEA) is performed for accurate parameter calculation, design optimization, and thermal calculation. Because of the importance of core loss in high-speed motors, rotational core loss model is employed, and the core losses are coupled directly into thermal calculation by keeping the same hexahedral mesh structure between magnetic field analysis and thermal analysis. Since the rotor modal analysis is very important to high-speed motors, the natural frequencies and mode of the rotor are studied. © 2007 IEEE

    Comparative study of 3D flux electrical machines with soft magnetic composite cores

    Full text link
    This paper compares two types of three-dimensional (3D) flux electrical machines with soft magnetic composite (SMC) cores, namely claw pole and transverse flux machines. 3D electromagnetic field analysis is conducted for the computation of some important parameters and optimization of the machine structures. An Equivalent electric circuit is derived to calculate the machine performances. The analysis methods are validated by experimental results of a single phase claw pole permanent magnet machine with a SMC core. Useful conclusions are drawn from the evaluation and comparison of two machines with soft magnetic composite cores

    Accurate determination of parameters of a claw-pole motor with SMC stator core by finite-element magnetic-field analysis

    Full text link
    Effective and accurate prediction of key motor parameters, such as winding flux, back electromotive force, inductance and core losses, is crucial for design of high-performance motors. Particularly, for electrical machines with new materials and nonconventional topology, traditional design approaches based on the equivalent magnetic circuit, empirical formulas and previous experiences cannot provide correct computation. The paper presents accurate determination of major parameters of a three-phase three-stack claw-pole permanent-magnet motor with a soft magnetic composite (SMC) stator core by finite-element analysis of the magnetic field. The effects of magnetic saturation and armature reaction are considered. The theoretical results by numerical analysis are validated by the experiments on the claw-pole SMC-motor prototype

    Effect of armature reaction of a permanent-magnet claw pole SMC motor

    Full text link
    The finite-element method enables an accurate analysis for the study on effects of armature reaction in electromagnetic devices, particularly those with complex structures and three-dimensional (3-D) magnetic flux paths. This paper investigates the effects of armature reaction on the parameters and performance of a permanent-magnet (PM) claw pole motor with soft magnetic composite (SMC) core, based on the magnetic field analysis using the 3-D nonlinear time-stepping finite-element method. The current in the stator winding produces a magnetic field, which interacts with the air gap field generated by the rotor magnets. Consequently, the air gap flux density profile against the rotor position produced by the rotor magnets deviates, and so does the back electromotive force. Since the stator field also changes the local saturation level of the magnetic core, the winding inductance varies with both the rotor position and stator currents. The inclusion of these effects in terms of parameter variations in the motor model is important for accurate performance analysis. On the other hand, the pattern of inductance against the rotor position and stator currents can be employed to effectively predict the rotor position at standstill and low speeds for robust sensorless control. The parameter computations are verified by experimental results on the PM claw pole SMC motor prototype. © 2007 IEEE
    • …
    corecore