118,126 research outputs found
The Importance of Chain-Length Dependent Kinetics in Free-Radical Polymerization: A Preliminary Guide
The effect of chain-length dependent propagation at short chain lengths on the observed kinetics in low-conversion free-radical polymerization (frp) is investigated. It is shown that although the values of individual propagation rate coefficients quickly converge to the high chain length value (at chain lengths, i, of about 10), its effect on the average propagation rate coefficients, kp, in conventional frp may be noticeable in systems with an average degree of polymerization (DPn) of up to 100. Furthermore it is shown that, unless the system is significantly retarded, the chain-length dependence of the average termination rate coefficient, kt, is not affected by the presence of chain-length dependent propagation and that there exists a simple (fairly general) scaling law between kt and DPn. This latter scaling law is a good reflection of the dependence of the termination rate coefficient between two i-meric radicals, kt i,i, on i. Although simple expressions seem to exist to describe the dependence of kp on DPn, the limited data available to date does not allow the generalization of these expressions
Nylon 6 polymerization in the solid state
The postcondensation of nylon 6 in the solid state was studied. The reactions were carried out on fine powder in a fluidized bed reactor in a stream of dry nitrogen in the temperature range 110-205°C and during 1-24 h. The solid-state polymerization (SSP) did not follow melt kinetics, but was found to be limited by the diffusion of the autocatalyzing acid chain end group. Factors thought to influence SSP were studied, e.g., heat treatment, starting molecular weight, and remelting. Surprisningly, heat treatment had little effect, but the starting molecular weight had a strong effect on the reaction rate. The higher the starting molecular weight, the faster the reaction. This could be explained as a changing concentration distribution of the reactive groups in the solid state on SSP. The kinetics of the SSP had more than one region, and the rate of reaction for conversions of over 30% could be expressed as - dc/dt = k(c/t), where k is a dimensionless constant independent of temperature with a value of 0.28. The integrated form has the form - In(c/co) = k In(t/), where co is the acid end-group concentration at the start, t is the reaction time, and is the induction time. The value of is both dependent on the starting concentration co and the reaction temperature and has an activation energy of 105 kJ/mol
A Stochastic model for dynamics of FtsZ filaments and the formation of Z-ring
Understanding the mechanisms responsible for the formation and growth of FtsZ
polymers and their subsequent formation of the -ring is important for
gaining insight into the cell division in prokaryotic cells. In this work, we
present a minimal stochastic model that qualitatively reproduces {\it in vitro}
observations of polymerization, formation of dynamic contractile ring that is
stable for a long time and depolymerization shown by FtsZ polymer filaments. In
this stochastic model, we explore different mechanisms for ring breaking and
hydrolysis. In addition to hydrolysis, which is known to regulate the dynamics
of other tubulin polymers like microtubules, we find that the presence of the
ring allows for an additional mechanism for regulating the dynamics of FtsZ
polymers. Ring breaking dynamics in the presence of hydrolysis naturally induce
rescue and catastrophe events in this model irrespective of the mechanism of
hydrolysis.Comment: Replaced with published versio
End-group functionalization of poly(2-oxazoline)s using methyl bromoacetate as initiator followed by direct amidation
Poly(2-alkyl/aryl-2-oxazoline)s (PAOx) are an alluring class of polymers for many applications due to the broad chemical diversity that is accessible for these polymers by simply changing the initiator, terminating agent and the monomer(s) used in their synthesis. Additional functionalities (that are not compatible with the cationic ring-opening polymerization) can be introduced to the polymers via orthogonal post-polymerization modifications. In this work, we expand this chemical diversity and demonstrate an easy and straightforward way to introduce a wide variety of functional end-groups to the PAOx, by making use of methyl bromoacetate (MeBrAc) as a functional initiator. A kinetic study for the polymerization of 2-ethyl-2-oxazoline (EtOx) in acetonitrile (CH3CN) at 140 degrees C revealed relatively slow initiation and slower polymerization than the commonly used initiator, methyl tosylate (MeOTs). Nonetheless, well-defined polymers could be obtained with MeBrAc as initiator, yielding polymers with near-quantitative methyl ester end-group functionality. Next, the post-polymerization modification of the methyl ester end-group with different amines was explored by introducing a range of functionalities, i.e. hydroxyl, amino, allyl and propargyl end-groups. The lower critical solution temperature (LCST) behavior of the resulting poly(2-ethyl-2-oxazoline)s was found to vary substantially in function of the end-group introduced, whereby the hydroxyl group resulted in a large reduction of the cloud point transition temperature of poly(2-ethyl-2-oxazoline), ascribed to hydrogen bonding with the polymer amide groups. In conclusion, this paper describes an easy and fast modular approach for the preparation of end-group functionalized PAOx
Dynamic Compression of in situ Grown Living Polymer Brush: Simulation and Experiment
A comparative dynamic Monte Carlo simulation study of polydisperse living
polymer brushes, created by surface initiated living polymerization, and
conventional polymer monodisperse brush, comprising linear polymer chains,
grafted to a planar substrate under good solvent conditions, is presented. The
living brush is created by end-monomer (de)polymerization reaction after
placing an array of initiators on a grafting plane in contact with a solution
of initially non-bonded segments (monomers). At equilibrium, the monomer
density profile \phi(z) of the LPB is found to decline as \phi(z) ~ z^{-\alpha}
with the distance from the grafting plane z, while the distribution of chain
lengths in the brush scales as c(N) ~ N^{-\tau}. The measured values \alpha =
0.64 and \tau = 1.70 are very close to those, predicted within the framework of
the Diffusion-Limited Aggregation theory, \alpha = 2/3 and \tau = 7/4. At
varying mean degree of polymerization (from L = 28 to L = 170) and effective
grafting density (from \sigma_g = 0.0625 to \sigma_g = 1.0), we observe a
nearly perfect agreement in the force-distance behavior of the simulated LPB
with own experimental data obtained from colloidal probe AFM analysis on
PNIPAAm brush and with data obtained by Plunkett et. al., [Langmuir 2006, 22,
4259] from SFA measurements on same polymer
Poly(2-cyclopropyl-2-oxazoline): from rate acceleration by Cyclopropyl to Thermoresponsive properties
The synthesis and microwave-assisted living cationic ring-opening polymerization of 2-cyclopropyl-2-oxazoline is reported revealing the fastest polymerization for an aliphatic substituted 2-oxazoline to date, which is ascribed to the electron withdrawing effect of the cyclopropyl group. The poly(2-cyclopropyl-2-oxazoline) (pCPropOx) represents an alternative thermo-responsive poly(2-oxazoline) with a reversible critical temperature close to body temperature. The cloud point (CP) of the obtained pCPropOx in aqueous solution was evaluated in detail by turbidimetry, dynamic light scattering (DLS) and viscosity measurements. pCPropOx is amorphous with a significantly higher glass transition temperature (T(g) similar to 80 degrees C) compared to the amorphous poly(2-n-propyl-2-oxazoline) (pnPropOx) (T(g) similar to 40 degrees C), while poly(2-isopropyl-2-oxazoline) piPropOx is semicrystalline. In addition, a pCPropOx comb polymer was prepared by methacrylic acid end-capping of the living cationic species followed by RAFT polymerization of the macromonomer. The polymer architecture does not influence the concentration dependence of the CP, however, both the CP and T(g) of the comb polymer are lower due to the increased number of hydrophobic end groups
Holographic characterization of chain photopolymerization
A holographic characterization technique is developed in accordance with a general photopolymerization model. The technique allows detailed quantification of the chemical parameters, including their variation from the Trommsdorff effect. The holographic procedure is especially suited for studying the diffusion of the chemical reactants
- …
