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Summary:  The effect of chain-length dependent propagation at short chain 
lengths on the observed kinetics in low-conversion free-radical polymerization 
(frp) is investigated.  It is shown that although the values of individual 
propagation rate coefficients quickly converge to the high chain length value 
(at chain lengths, i, of about 10), its effect on the average propagation rate 
coefficients, 〈kp〉,  in conventional frp may be noticeable in systems with an 
average degree of polymerization (DPn) of up to 100.  Furthermore it is shown 
that, unless the system is significantly retarded, the chain-length dependence 
of the average termination rate coefficient, 〈kt〉, is not affected by the presence 
of chain-length dependent propagation and that there exists a simple (fairly 
general) scaling law between 〈kt〉 and DPn.  This latter scaling law is a good 
reflection of the dependence of the termination rate coefficient between two i-
meric radicals, kt

i,i, on i.  Although simple expressions seem to exist to 
describe the dependence of 〈kp〉 on DPn, the limited data available to date does 
not allow the generalization of these expressions. 
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Introduction 
The main process and product parameters to be controlled in free-radical polymerization 

are the rate of polymerization (Rp) and the molecular weight distribution of the formed 

polymer.  In the latter case, one often tries to control the number average degree of 

polymerization (DPn) and the polydispersity index (PDI).  Although an increasing number 

of researchers are starting to use (complicated) computer modelling packages, most people 

would still use the steady-state rate equation (Eq. 1) for predicting changes in rate and the 

Mayo equation (Eq. 2) for predicting changes in the average degree of polymerization 

when changing reaction conditions. 
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The steady-state rate equation for a free-radical polymerization of a monomer M initiated 

by a thermal initiator I, with decomposition rate coefficient kd and initiator efficiency f 

(defined as the fraction of primary radicals not undergoing cage reactions), is given by Eq. 

1, where 〈kt〉 is the chain-length averaged termination rate coefficient and 〈kp〉 is the chain-

length averaged propagation rate coefficient for the given system.  The use of a system-

dependent 〈kt〉 instead of an (incorrect) single chain-length independent value of kt in this 

equation seems to be generally accepted now,[1,2] but as we have shown previously and 

will elaborate upon in this paper, in certain cases the use of 〈kp〉 instead of the long-chain 

kp value is also required.[3-5] 

[M] [I]   
t

d
pp k

fkkR =        (1) 

Similarly, the familiar Mayo equation, given by Eq. 2, should contain 〈kp〉 and 〈kt〉 instead 

of their chain-length independent equivalents. 

( ) ∑+λ+=
X p

Xtr,

p

t

n [M] 
[X] 

  
[M] 
[R] 

 1  1
k
k

k
k

DP
      (2) 

In this equation, λ is the fraction of chains terminated by disproportionation, [R] is the 

overall radical concentration and ktr,X is the rate coefficient for chain transfer to any chain 

transfer agent X (including monomer).  Note that a chain-length independent chain 

transfer rate coefficient has been used, which is unlikely to be the case for similar reasons 

as to why the propagation rate coefficient is chain-length dependent.[6]  However, in order 

to not unnecessarily overcomplicate the discussion and to focus on the effect of chain-

length dependent propagation, we have assumed ktr,X independent of chain length in the 

current study. 

 

Both equations are, in principle, simple to use and clearly show how the rate and 

molecular weight change with changing reaction conditions (i.e., reactant/additive 

concentrations and rate coefficients).  The only complicating factor in using these 

expressions is the fact that adequate values for 〈kt〉 (and in some cases also for 〈kp〉) must 

be used and these values are not always readily available from standard reference sources 

such as the Polymer Handbook.[1]  In the case of 〈kt〉 this is caused by the fact that the 

reaction is diffusion-controlled and hence the rate coefficient for termination is chain-

length dependent; therefore a chain-length averaged value, given by Eq. 3, should be used. 
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In this expression, kt
i,j is the rate coefficient for the termination reaction between an i-

meric radical Ri and a j-meric radical Rj.  It is important to note that in this work R1 refers 

to a truly monomeric radical, whether it has been derived from initiator, chain transfer 

agent or chain transfer to monomer (so it does not refer to the radical after the first 

addition to monomer – this radical would be denoted as R2 here).  Hence, to really 

determine a value for 〈kt〉 one would need to know the individual values for the kt
i,j and the 

propagating radical distribution.  It is therefore clear that a "termination rate coefficient" 

measured for a given monomer may not be applicable to the same monomer, polymerized 

under different reaction conditions.[1]  To make things even more complicated, 〈kt〉 also 

depends on conversion, as the diffusion of the chains depends highly on the viscosity of 

the reaction medium.[1]  In order to simplify our discussion, we limit ourselves here to 

low-conversion polymerization, so as to eliminate this conversion/viscosity effect. 

 

The chain-length dependence of the propagation rate coefficient is of a more "chemical" 

nature in that it is caused by differences in the activation energy and the frequency factor 

of the actual, intrinsic, rate coefficients of the addition reaction for different size 

radicals.[5]  The chain-length averaged propagation rate coefficient is defined by Eq. 4, 
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where kp
i is defined as the rate coefficient for the addition of an i-meric radical to 

monomer.  The chain-length dependence of kp is relatively small and only noticeable for 

systems in which a relatively low DPn is produced (see below).[5]  Hence, in contrast to 

reported values of kt, which are only applicable to very specific situations, carefully 

obtained values for kp in general do represent a "true" physical, generally applicable, rate 

coefficient (be it for long-chain propagation). 

 

So, where does this leave the experimental polymer chemist?  Is detailed knowledge really 

required about kp
i, kt

i,j and the distribution of Ri?  Those familiar with the literature 

regarding chain-length dependent termination (and now also chain-length dependent 

propagation) have probably encountered unfriendly looking mathematical equations and 



some may have even decided to put the paper aside labelling it as only relevant to 

theoreticians.  To some extent these readers might have been right in their thinking, were 

it not that chain-length dependence often causes deviations from what is expected from 

classical theory and ignoring it in certain instances can cause incorrect conclusions to be 

drawn.  Hence, for those workers only interested in rough estimates for the chain-length 

dependence of 〈kp〉 and 〈kt〉 to be used in Eqs. 1 and 2, it would be very useful to have 

approximate scaling laws such as Eqs. 5 and 6. 
eDPGk —

nt  ⋅≈         (5) 

aDPQk —
np   ⋅≈         (6) 

Here, G and Q are constant pre-exponential factors and e and a scaling exponents for 〈kt〉 

and 〈kp〉, respectively. 

 

In what follows we will investigate whether such scaling laws exist and how important 

chain length dependent propagation is in free-radical polymerization. 

 

Chain-Length Dependent Termination and Propagation Rate 

Coefficients 
It has been known for many decades that the termination process is diffusion-controlled 

and therefore the rate coefficient for termination depends on the length of the reacting 

radical.[1]  Furthermore, it has been known that the rate-determining processes for the 

termination of small and long radicals are center-of-mass and segmental diffusion, 

respectively.  These processes scale with the chain length as i–e, where e ≈ 0.5 and 0.16 for 

the former and latter processes respectively.  It is also known that two monomeric radicals 

undergo a termination reaction with a rate coefficient of about 109 dm3mol-1s-1.  Although 

these facts have been known for quite some time, we recently presented for the first time a 

simple composite termination model that encompasses all these experimental facts.[7]  In 

this model, which is schematically shown in Figure 1, the termination rate coefficient 

between two i-meric radicals is given by Eq. 7, where we assume a critical chain length 

icrit of about 100 units at which the rate determining process from center-of-mass diffusion 

(i ≤ icrit) changes to segmental diffusion (i > icrit).  Cross-termination is then described by 

kt
i,j = (kt

i,i×kt
j,j)1/2. 
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The values for the parameters in Eq. 7 that we used in our modeling for MMA at 60˚C are  

kt
1,1 = 1×109 dm3mol-1s-1, eS = 0.50, eL = 0.16 and icrit = 100; we will use these parameters 

as our defaults in all the kinetic modelling for this paper.  The applicability of this model 

was confirmed experimentally for several different monomer systems by Buback and co-

workers with parameter-values very close to those proposed by us.[8,9] 

segmental diffusion
        dominant

eS = 0.5

log ki,i
t

log i

 kt
1,1 ~ 109 

icrit ~ 100

eL = 0.16

center-of-mass diffusion
           dominant

 
Figure 1.  Chain-length dependence of kt

i,i according to Eq. 7 indicating the regions where 
center-of-mass diffusion and segmental diffusion are the rate dominating processes. 
 

Based on an analysis of kinetic data on small radical additions and the first few 

propagation steps in free-radical polymerization, backed up by theoretical investigations 

of the propagation rate coefficient, we proposed the empirical formula given by Eq. 8 for 

the description of the chain-length dependence of the propagation rate coefficient:[3-5] 
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In this equation, kp is the long-chain propagation rate coefficient, C1 = (kp
1–kp)/kp and i1/2 

is the chain length at which kp
1–kp halves in value (i.e., a sort of "half-life").  Available 

data thus far suggest C1 ≈ 10-50 and i1/2 ≈ 0.5-1.5;[5] for MMA polymerization we found 

values of C1 = 15.8 and i1/2 = 1.12.  These latter values were obtained by fitting pulsed 

laser polymerization data obtained by Van Herk and co-workers[10] and were found to 

describe well our (independently obtained) experimental steady state data (both rates and 

molecular weight distributions).[3,4] 

 

In Figure 2, Eq. 8 is graphically displayed for C1 = 10 and three different values for i1/2, 

and it is clear from this figure that the chain length dependence of kp
i quickly converges to 



its long chain value: for the more realistic values of i1/2 = 0.5 and 1.0, this happens before i 

= 10, and even for the unrealistically high value of i1/2 = 5 this happens before i = 50.  This 

behaviour is not significantly affected by the value of C1.  Although this effect becomes 

insignificant quickly for the elemental rate coefficients, we will see in a following section 

that its macroscopic effect may be noticeable in polymerizations with average degrees of 

polymerization of up to 100.   
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Figure 2.  Chain-length dependence of kp according to Eq. 8, with C1 = 10 and i1/2 = 0.5, 1 
and 5. 
 

Finally, two important notes need to be made here regarding chain length dependent 

propagation (CLDP): (i) the equation given by Eq. 8 is purely an empirical (but physically 

realistic!) formula that describes the currently available experimental and theoretical data 

well, and (ii) there is some contention as to whether there may be an additional process 

happening that causes an additional chain length dependence up to much higher chain 

lengths[10,11] – in this work we limit ourselves to CLDP at short chain lengths. 

 

Kinetic Modelling Procedure 

In order to determine the values of 〈kt〉 and 〈kp〉 for varying reaction conditions, it can be 

seen from Eqs. 3 and 4 that we need to know the individual rate coefficients kt
i,j and kp

i 

and the radical distribution (i.e., [Ri] for all i).  The individual rate coefficients are known 

from Eqs. 7 and 8, and the radical distribution can be determined using an iterative 

procedure for solving Eq. 9, which is easily derived after making the steady-state 

assumption for all radical concentrations.[7] 
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In this equation, Rinit is the initiation rate (= 2f kd [I] for a thermal initiator), [R] is the 



overall radical concentration, ftrX is the transfer frequency of an i-meric propagating 

radical (= ktrX[X]), fp
i is its propagation frequency (=kp

i[M]) and ft
i its termination 

frequency (= (2kt
i,iRinit)1/2 for kt

i,j = (kt
i,i×kt

j,j)1/2).  All these parameters are known, except 

the overall radical concentration [R], which is at the same time an input of the calculation 

process and its result ([R] = Σ [Ri]).  Hence, an iterative procedure is required to solve the 

radical balances, in which first a guess needs to be made for [R] (a reasonable starting 

point being a guess based on "classical" kinetics) after which Eq. 9 is solved up to 

sufficiently high i.  Once convergence has been reached for [R], 〈kt〉 and 〈kp〉 can be 

calculated using Eqs. 3 and 4.  To get an exact value for the corresponding DPn in the 

system, one would need to evaluate the entire molecular weight distribution starting from 

the radical distribution.  Alternatively, one could use the Mayo equation (Eq. 2) and for 

short chains add 1 unit to the DPn to correct for the long-chain-approximation; although 

this is clearly an approximation, it is sufficiently accurate for the present purposes.  This 

whole procedure, which we carried out using an EXCEL spreadsheet up to i= 65519 (i.e., 

the maximum number of rows that we could use), is schematically shown in Figure 3.[5]  

In order to effect changes in DPn, we varied ftrX and/or Rinit. 

 
Figure 3.  Schematic diagram containing the steps taken to determine 〈kp〉 and 〈kt〉 for 
systems with a varying DPn. 
 

The Effect of CLDP on the Observed Kinetics 
Firstly we will consider the effect of CLDP on the observed termination rate coefficient 

〈kt〉.  In Figure 4, the variation of 〈kt〉 with DPn is shown for both chain length independent 

(CLIP) and dependent propagation.  Two things are immediately clear from this figure.  



Firstly that the 〈kt〉-DPn relationship reflects that of kt
i,i-i, and secondly that the effect of 

chain length dependent propagation on this relationship is very small.  So, we can 

conclude that a simple scaling law exists between 〈kt〉 and DPn. Such a scaling law, 

holding for Eq. 7 with the given parameter values, is shown in Figure 4. 
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Figure 4.  The chain-length dependence of the average termination rate coefficient 
assuming a constant kp ( ) and chain length dependent kp with C1 = 10 and i1/2 = 0.5 ( ), 
1.0 ( ) and 5 ( ). 
 

In Figure 5, the relationship between the observed propagation rate coefficient 〈kp〉 and 

DPn is shown.  The first thing that draws attention is the fact that the effect of CLDP on 

〈kp〉 is noticeable up to much higher values of DPn than the value of the chain length i up 

to which CLDP is significant in the individual rate coefficients (see Figure 2).  For 

example, for the experimentally most likely values of i1/2 = 0.5 and 1.0, kp
i ≈ kp for i ≈ 10, 

but 〈kp〉 ≈ kp only for DPn ≈ 100.  Hence, especially when working in systems where DPn
 < 

100, one should be aware that the observed propagation rate coefficient 〈kp〉 may not be 

the same as the long chain propagation rate coefficient kp (normally determined by PLP). 
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Figure 5.  Dependence of 〈kp〉 on DPn, with (a) C1 = 10 and i1/2 = 0.5 ( ), 1.0 ( ) and 5 
( );  (b) with C1 = 50 and i1/2 = 0.5 ( ), 1.0 ( ) and 5 ( ).  Full and dotted lines are the 



fits according to Eqs. 12 and 13 respectively. 
 

In Figure 5 are also shown the first attempts to arrive at a simple scaling law for 〈kp〉 with 

DPn similar to what was done earlier for 〈kt〉.  Starting from a simple "two-state" 

propagation model used by Van Herk and co-workers (Eq. 10),[10] we derived a linear 

relationship between 〈kp〉 and the amount of chain transfer agent in the system (Eq. 11).[4] 
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The form of Eq. 11 suggests the possible existence of the following relationship between 

〈kp〉 and DPn, where Q' is the only adjustable parameter.   

p
1

np      kDP'Qk += −         (12) 

The fits to the data with C1 = 10 are shown in Figure 5a and the results appeared very 

promising, but in the case of C1 = 50, the results were significantly worse as shown in 

Figure 5b. 

 
Clearly, the simple propagation model (Eq. 10) on which Eq. 12 is based does not 

adequately describe the true CLDP behaviour and therefore we modified it to incorporate 

two fit parameters Q and a (Eq. 13).  The corresponding data fits are also shown in Figure 

5b and it is immediately clear that Eq. 13 performs much better in describing the data than 

does Eq. 12.  In Table 1, all fit parameters for Eqs. 12 and 13 to all combinations of 

C1=10, 20 and 50 and i1/2 = 0.5, 1.0 and 5.0 are listed. 

pnp      kDPQk a += −         (13) 

 

Table 1.  Summary of fit parameters for 〈kp〉 according to eqs 12 and 13. 
C1 i1/2 Q' / dm3 mol-1 s-1 Q / dm3 mol-1 s-1 a 

10 0.5 2.8×103 6.5×103 1.34 

10 1.0 5.7×103 2.1×104 1.49 

10 5.0 3.9×104 6.1×105 1.79 

20 0.5 3.4×103 8.4×103 1.37 

20 1.0 7.2×103 2.8×104 1.51 



20 5.0 5.3×104 1.1×106 1.87 

50 0.5 4.3×103 1.1×104 1.37 

50 1.0 9.3×103 3.9×104 1.54 

50 5.0 7.2×104 2.1×106 1.97 

 

From Table 1 it can be seen that for the same value of i1/2, Q' and Q increase with 

increasing C1 (as expected) and that a increases with increasing i1/2 (with only a small 

dependence on C1).  It would be useful to have a simple relationship between these fit 

parameters and the more "fundamental" CLDP parameters C1 and i1/2, but thus far we have 

not been able to discover any obvious one.  (NB. Although C1 and i1/2 are indeed more 

fundamental in that they describe the chain length dependence of kp
i, one should 

remember that, at least at present, Eq. 8 is also an empirical relationship). 

 

We conclude this section with a discussion on the effect of CLDP on the observed rate of 

polymerization.  In Figure 6, the dependence of 〈kp〉/〈kt〉1/2 (note that Rp ∝ 〈kp〉/〈kt〉1/2) on 

DPn is shown, where the dotted line indicates the situation of CLIP. 
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Figure 6.  The effect of CLDP on the observed rate of polymerization (expressed here as 
〈kp〉/〈kt〉1/2) at a given average degree of polymerization in the system.  Data are shown for 
the cases of C1 = 10 and i1/2 = 0.5 ( ), 1.0 ( ) and 5 ( ). 
 

As expected for CLIP, the ratio 〈kp〉/〈kt〉1/2 (and hence the rate) decreases with decreasing 

DPn: 〈kt〉 increases with decreasing DPn, while kp remains constant.  For CLDP we see a 

positive deviation from the CLIP situation, because the effect of an increasing value of 〈kt〉 

is compensated by an increasing value of 〈kp〉 with decreasing DPn.  This effect becomes 

more pronounced with increasing values of i1/2 and C1.  It should also be noted here that 

this behaviour was observed experimentally for the low-conversion bulk polymerization 



of methyl methacrylate at 60°C in the presence of dodecanethiol.[3] 

 

The main message from Figure 6 is that we will see different rate behaviour with changing 

DPn depending on the values of C1 and i1/2; systems with a very weak dependence of 〈kp〉 

on DPn will show a decrease in rate at low DPn, whereas a stronger dependence may lead 

to apparent classical (chain-length independent) kinetics or even increased rates.  Hence, 

when predicting the rate at lower values of DPn from rate data at higher DPn we may 

significantly underestimate the rate if we only take into account the chain length 

dependence of 〈kt〉.  It is therefore important to have an idea about the chain length 

dependence of either kp or 〈kp〉.  However, as is clear from Figures 4-6, any possible 

effects from CLDP probably only manifest themselves for DPn < 100 and are probably 

safely ignored at higher DPn. 

 

The Effect of kp
1 on the Observed Kinetics 

Thus far, we have considered the chain length dependence of propagation assuming that 

R1 has the same, or a very similar, chemical nature as the polymeric propagating radical, 

i.e., it is a truly monomeric radical.  Naturally, this need not always be the case.  Initiator-

derived radicals may react faster with a given monomer than the radical derived from this 

monomer, similar to propagating radicals that may prefer crosspropagation over 

homopropagation in copolymerization.  The opposite can also be the case.  One may have 

chosen a poor initiator and the primary radical reacts only slowly with monomer, e.g., 

cyanoisopropyl radical addition to vinyl acetate monomer.[12]  Additionally, chain transfer 

agent-derived radicals may reinitiate at different rates with different monomers, where 

slow additions can lead to retardation or inhibition as has recently been studied 

extensively in RAFT polymerization.[13]  It is therefore interesting to investigate the effect 

of different values of kp
1 on the overall reaction kinetics; preliminary results of these 

studies have been published earlier and it should be noted that in this previous publication 

a small error was made in the calculation of DPn.[5]  Although this does not affect any 

qualitative conclusions of the earlier study, it changes the quantitative trends slightly.  The 

results presented in this paper replace those presented earlier.[5] 

 

We consider two different primary radicals RA and RB, derived from initiator 

decomposition and chain transfer, respectively.  The addition to monomer for these two 



radicals occurs with different rate coefficients as indicated in Scheme 1.  For simplicity 

we assume that the resulting radicals after the first addition steps are indistinguishable and 

that the rate coefficient of the subsequent monomer addition is independent of the primary 

radical fragment.  We realise that this assumption is unlikely to be completely correct as 

the existence of significant penultimate unit effects has been proven.[14]  However, it is 

unlikely that a possible penultimate unit effect will significantly alter any observed trends 

in CLDP and if so, it is expected that it would enhance the observed effect.  Hence, while 

lacking any reliable quantitative information on the penultimate unit effect we assume 

Scheme 1 to be an adequate reflection of the kinetic situation. 
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Scheme 1 

 
In the current study (using a modification of Eq. 9 to incorporate two different primary 

radicals as described previously),[5] DPn was varied by varying the chain transfer 

frequency and we examined the effect of changing kp
B (50×, 10×, 1× and 0.1×kp) , while 

maintaining kp
A = (15.8 + 1) × kp (i.e., MMA at 60°C); see Figure 7a.  In Figures 7b-d, the 

results of these calculations are shown and it is immediately clear that only the lowest 

value of kp
B gives results which are very different to those discussed in Figures 4-6.   
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Figure 7.  Effect of changing kp

1 on the observed kinetics.  Chain length dependence of (a) 
kp

i, (b) 〈kt〉, (c) 〈kp〉 with full lines fits according to Eq. 13, (d) 〈kp〉/〈kt〉1/2.  For all figures: 
( ) kp

A = 16.8×kp for all calculations, ( ) kp
B = 50×kp, ( ) kp

B = 10×kp, ( ) kp
B = kp, 

( ) kp
B = 0.1×kp and ( ) kp

i according to Eq. (8) with C1 = 15.8 and i1/2 = 1.12 for all i ≥ 
2, with kp = 831 dm3mol-1s-1. 
 

The calculated values of 〈kt〉 at low DPn for kp
B = 0.1×kp are significantly higher than those 

for the other three cases, which are well described by the 〈kt〉 equation derived from the 

data in Figure 4.  This is presumably caused by an increase in primary radical termination, 

but more detailed simulations will be required to shed more light on this situation.  In 

accordance with what we have seen earlier (i.e., in Figures 5-6 for i1/2 = 1), the results in 

Figures 7c and d show that for all four values of kp
B there is a significant effect on 〈kp〉 and 

the rate for DPn < 100, with the results obtained for kp
B = 0.1 × kp showing a very strong 

retardation.  It is conceivable that this retardation effect is underestimated here, as a 

possible penultimate unit effect is likely to lower kp
2 and hence further reduce 〈kp〉 and the 

rate at lower values of DPn.  The data obtained for the other three cases were fitted by Eq. 

13 with the resulting fit parameters listed in Table 2. 

 

Table 2.  Fit parameters according to Eq. (13) for the 〈kp〉 data in Figure 7c. 
kp

B / kp Q / dm3mol-1s-1 a 

0.1 no fit possible no fit possible 

1.0 5.0×103 1.08 

10 1.7×104 1.34 

50 2.4×104 1.46 

 

It can be seen from Figure 7c that Eq. 13 provides a reasonable description of the found 



〈kp〉 data, with the situations in which kp
B > kp having values for Q and a in the same range 

as those shown in Table 1 for i1/2 = 0.5 – 1.  Although it is too early to draw any general 

conclusions at this stage, the current results suggest that it is likely that in the future (with 

more explicit experimental data available) it may be possible to simply estimate the 〈kp〉-

DPn behaviour from a known value of kp
1 and a generally assumed chain-length 

dependence of kp
i. 

 

In the light of the results discussed above, the rate data shown in Figure 7d do not show 

any surprises.  The case of kp
B = 0.1 × kp shows a significant retardation at low DPn, 

whereas the other three cases show a faster rate as compared to the case of CLIP; in the 

cases where kp
B > kp we observe a significant rate increase at low DPn. 

 

Conclusion 
In this paper we examined the effect of CLDP on kinetics in low-conversion free-radical 

polymerization.  We have shown that although the chain length dependence of the 

individual kp
i does not extend beyond i ≈ 10 for common systems, a significant 

macroscopic effect may be observed in systems with DPn up to ~100.  This observation 

leads us to draw some preliminary conclusions regarding CLDP: (a) it should probably not 

be ignored in living radical polymerizations with low DPn (≈ i), (b) one should be aware 

of it in conventional frp in systems with DPn < 100, and (c) it is probably safe to ignore at 

higher DPn.  It has to be stressed here, however, that (although physically sensible!) these 

conclusions are only based on a limited amount of available data and that a possible 

additional mechanism of CLDP at higher chain lengths may complicate matters further.  

The situation for termination seems to be much clearer.  Our recently proposed composite-

termination model has independently been shown to present a good representation for the 

termination process in several different monomers.  A generally applicable scaling law, 

reflecting the chain-length dependence of the individual rate coefficients, seems to apply 

to the dependence of 〈kt〉 on DPn and is fairly insensitive to CLDP.  For propagation, we 

have not yet succeeded in deriving a generally applicable scaling law for the variation of 

〈kp〉 with DPn. 
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