1,476,409 research outputs found
Integrin-mediated membrane blebbing is dependent on the NHE1 and NCX1 activities.
Integrin-mediated signal transduction and membrane blebbing have been well studied to modulate cell adhesion, spreading and migration^1-6^. However, the relationship between membrane blebbing and integrin signaling has not been explored. Here we show that integrin-ligand interaction induces membrane blebbing and membrane permeability change. We found that sodium-proton exchanger 1 (NHE1) and sodium-calcium exchanger 1 (NCX1) are located in the membrane blebbing sites and inhibition of NHE1 disrupts membrane blebbing and decreases membrane permeability change. However, inhibition of NCX1 enhances cell blebbing to cause cell swelling which is correlated with an intracellular sodium accumulation induced by NHE17. These data suggest that sodium influx induced by NHE1 is a driving force for membrane blebbing growth, while sodium efflux induced by NCX1 in a reverse mode causes membrane blebbing retraction. Together, these data reveal a novel function of NHE1 and NCX1 in membrane permeability change and blebbing and provide the link for integrin signaling and membrane blebbing
Ignition and Front Propagation in Polymer Electrolyte Membrane Fuel Cells
Water produced in a Polymer Electrolyte Membrane (PEM) fuel cell enhances
membrane proton conductivity; this positive feedback loop can lead to current
ignition. Using a segmented anode fuel cell we study the effect of gas phase
convection and membrane diffusion of water on the spatiotemporal nonlinear
dynamics - localized ignition and front propagation - in the cell. Co-current
gas flow causes ignition at the cell outlet, and membrane diffusion causes the
front to slowly propagate to the inlet; counter-current flow causes ignition in
the interior of the cell, with the fronts subsequently spreading towards both
inlets. These instabilities critically affect fuel cell performance
Force balance and membrane shedding at the Red Blood Cell surface
During the aging of the red-blood cell, or under conditions of extreme
echinocytosis, membrane is shed from the cell plasma membrane in the form of
nano-vesicles. We propose that this process is the result of the
self-adaptation of the membrane surface area to the elastic stress imposed by
the spectrin cytoskeleton, via the local buckling of membrane under increasing
cytoskeleton stiffness. This model introduces the concept of force balance as a
regulatory process at the cell membrane, and quantitatively reproduces the rate
of area loss in aging red-blood cells.Comment: 4 pages, 3 figure
Real-time monitoring of proton exchange membrane fuel cell stack failure
Uneven pressure drops in a 75-cell 9.5-kWe proton exchange membrane fuel cell stack with a U-shaped flow configuration have been shown to cause localised flooding. Condensed water then leads to localised cell heating, resulting in reduced membrane durability. Upon purging of the anode manifold, the resulting mechanical strain on the membrane can lead to the formation of a pin-hole/membrane crack and a rapid decrease in open circuit voltage due to gas crossover. This failure has the potential to cascade to neighbouring cells due to the bipolar plate coupling and the current density heterogeneities arising from the pin-hole/membrane crack. Reintroduction of hydrogen after failure results in cell voltage loss propagating from the pin-hole/membrane crack location due to reactant crossover from the anode to the cathode, given that the anode pressure is higher than the cathode pressure. Through these observations, it is recommended that purging is avoided when the onset of flooding is observed to prevent irreparable damage to the stack
Membrane repair against H. pylori promotes cancer cell proliferation
Membrane repair is a universal response against physical and biological insults and enables cell survival. Helicobacter pylori is one of the most common human pathogens and the first formally recognized bacterial carcinogen associated with gastric cancer. However, little is known about host membrane repair in the context of H. pylori infection. Here we show that H. pylori disrupts the host plasma membrane and induces Ca2+ influx, which triggers the translocation of annexin family members A1 and A4 to the plasma membrane. This in turn activates a membrane repair response through the recruitment of lysosomal membranes and the induction of downstream signaling transduction pathways that promote cell survival and proliferation. Based on our data, we propose a new model by which H. pylori infection activates annexin A1 and A4 for membrane repair and how annexin A4 over-expression induced signaling promotes cell proliferation. Continual activation of this membrane repair response signaling cascade may cause abnormal cellular states leading to carcinogenesis. This study links H. pylori infection to membrane repair, providing insight into potential mechanisms of carcinogenesis resulting from membrane damage
Human hepatic cell behavior on polysulfone membrane with double porosity level
In the membrane-based bioartificial livers developed up to now,the hepatic cells were located either in the fibers lumen or in the cartridge,with limited capacity for cell hosting.Here,we designed a polysulfone (PSU) membrane with a double porosity level:(i)surface macroporosity emerging in
macrochambers accessible to hepatic cell colonization;(ii)microporosity to ensure gas and molecule transfers between macrochambers and supernatant,as well as potential immune barrier. ESEM and X-ray tomography confirmed that macrochambers accessed the membrane surface and were inter-connected. Biocompatibility and performances of this PSU membrane with double porosity level were compared to classical semi-permeable structures,following cell organization,cell proliferation and liver specific activities over a 9 days incubation. Macrochambers were colonized by hepatic cells, leading to higher albumin synthesis compared to control.Therefore,this membrane with double porosity appeared as a promising support to offer an inner 3D environment adequate to cell proliferation to form a liver-like tissue
Automated Segmentation of Cells with IHC Membrane Staining
This study presents a fully automated membrane segmentation technique for immunohistochemical tissue images with membrane staining, which is a critical task in computerized immunohistochemistry (IHC). Membrane segmentation is particularly tricky in immunohistochemical tissue images because the cellular membranes are visible only in the stained tracts of the cell, while the unstained tracts are not visible. Our automated method provides accurate segmentation of the cellular membranes in the stained tracts and reconstructs the approximate location of the unstained tracts using nuclear membranes as a spatial reference. Accurate cell-by-cell membrane segmentation allows per cell morphological analysis and quantification of the target membrane proteins that is fundamental in several medical applications such as cancer characterization and classification, personalized therapy design, and for any other applications requiring cell morphology characterization. Experimental results on real datasets from different anatomical locations demonstrate the wide applicability and high accuracy of our approach in the context of IHC analysi
TPLATE recruitment reveals endocytic dynamics at sites of symbiotic interface assembly in arbuscular mycorrhizal interactions
Introduction: Arbuscular mycorrhizal (AM) symbiosis between soil fungi and the majority of plants is based on a mutualistic exchange of organic and inorganic nutrients. This takes place inside root cortical cells that harbor an arbuscule: a highly branched intracellular fungal hypha enveloped by an extension of the host cell membrane—the perifungal membrane—which outlines a specialized symbiotic interface compartment. The perifungal membrane develops around each intracellular hypha as the symbiotic fungus proceeds across the root tissues; its biogenesis is the result of an extensive exocytic process and shows a few similarities with cell plate insertion which occurs at the end of somatic cytokinesis.
Materials and Methods: We here analyzed the subcellular localization of a GFP fusion with TPLATE, a subunit of the endocytic TPLATE complex (TPC), a central actor in plant clathrin-mediated endocytosis with a role in cell plate anchoring with the parental plasma membrane.
Results: Our observations demonstrate that Daucus carota and Medicago truncatula root organ cultures expressing a 35S::AtTPLATE-GFP construct accumulate strong fluorescent green signal at sites of symbiotic interface construction, along recently formed perifungal membranes and at sites of cell-to-cell hyphal passage between adjacent cortical cells, where the perifungal membrane fuses with the plasmalemma.
Discussion: Our results strongly suggest that TPC-mediated endocytic processes are active during perifungal membrane interface biogenesis—alongside exocytic transport. This novel conclusion, which might be correlated to the accumulation of late endosomes in the vicinity of the developing interface, hints at the involvement of TPC-dependent membrane remodeling during the intracellular accommodation of AM fungi
Recommended from our members
Dlgh1 coordinates actin polymerization, synaptic T cell receptor and lipid raft aggregation, and effector function in T cells.
Lipid raft membrane compartmentalization and membrane-associated guanylate kinase (MAGUK) family molecular scaffolds function in establishing cell polarity and organizing signal transducers within epithelial cell junctions and neuronal synapses. Here, we elucidate a role for the MAGUK protein, Dlgh1, in polarized T cell synapse assembly and T cell function. We find that Dlgh1 translocates to the immune synapse and lipid rafts in response to T cell receptor (TCR)/CD28 engagement and that LckSH3-mediated interactions with Dlgh1 control its membrane targeting. TCR/CD28 engagement induces the formation of endogenous Lck-Dlgh1-Zap70-Wiskott-Aldrich syndrome protein (WASp) complexes in which Dlgh1 acts to facilitate interactions of Lck with Zap70 and WASp. Using small interfering RNA and overexpression approaches, we show that Dlgh1 promotes antigen-induced actin polymerization, synaptic raft and TCR clustering, nuclear factor of activated T cell activity, and cytokine production. We propose that Dlgh1 coordinates TCR/CD28-induced actin-driven T cell synapse assembly, signal transduction, and effector function. These findings highlight common molecular strategies used to regulate cell polarity, synapse assembly, and transducer organization in diverse cellular systems
- …
