540,453 research outputs found

    Carbon Nanotube Initiated Formation of Carbon Nanoscrolls

    Full text link
    The unique topology and exceptional properties of carbon nanoscrolls (CNSs) have inspired unconventional nano-device concepts, yet the fabrication of CNSs remains rather challenging. Using molecular dynamics simulations, we demonstrate the spontaneous formation of a CNS from graphene on a substrate, initiated by a carbon nanotube (CNT). The rolling of graphene into a CNS is modulated by the CNT size, the carbon-carbon interlayer adhesion, and the graphene-substrate interaction. A phase diagram emerging from the simulations can offer quantitative guideline toward a feasible and robust physical approach to fabricating CNSs.Comment: 12 pages, 3 figure

    A study to improve the mechanical properties of silicon carbide ribbon fibers

    Get PDF
    Preliminary deposition studies of SiC ribbon on a carbon ribbon substrate showed that the dominant strength limiting flaws were at the substrate surface. Procedures for making the carbon ribbon substrate from polyimide film were improved, providing lengths up to 450 meters (1,500 ft.) of flat carbon ribbon substrate 1,900 microns (75 mils) wide by 25 microns (1 mil) thick. The flaws on the carbon ribbon were smaller and less frequent than on carbon ribbon used earlier. SiC ribbon made using the improved substrate, including a layer of pyrolytic graphite to reduce further the severity of substrate surface flaws, showed strength levels up to the 2,068 MPa (300 Ksi) target of the program, with average strength levels over 1,700 MPa (250 Ksi) with coefficient of variation as low as 10% for some runs

    Isotropic pyrolytic carbons

    Get PDF
    Depositing carbon on high-temperature substrate that is kept in motion by vibration produces isotropic pyrolytic graphite or carbon without using fluidized beds

    GROWTH OF GRAPHENE FILMS AND GRAPHENE PATTERNS

    Get PDF
    Large area graphene can be fabricated by depositing carbon and catalytic metal thin film(s) on a substrate, heating the carbon and the catalytic metal, and forming graphene on the substrate. The catalytic metal is evaporated during the heating process. The catalytic metal can be, for example, nickel, cobalt, or iron

    Development of a process for producing ribbon shaped filaments

    Get PDF
    Silicon carbide (SiC) ribbon filaments were produced on a carbon ribbon substrate, about 1500 microns (60 mils) wide and 100 microns (4 mils) thick in lengths up to 2 meters (6 ft), and with tensile strengths up to 142 KN/cm sq (206 Ksi). During the course of the study, ribbon filaments of boron were also produced on the carbon ribbon substrate; the boron ribbon produced was extremely fragile. The tensile strength of the SiC ribbon was limited by large growths or flaws caused by anomalies at the substrate surface; these anomalies were either foreign dirt or substrate imperfections or both. Related work carried out on round 100 micron (4 mils) diameter SiC filaments on a 33 micron (1.3 mil) diameter, very smooth carbon monofilament substrate has shown that tensile strengths as high as 551 KN/cm sq (800 Ksi) are obtainable with the SiC-carbon round substrate combination, and indicates that if the ribbon substrate surface and ribbon deposition process can be improved similar strengths can be realizable. Cost analysis shows that 100 micron x 5-10 micron SiC ribbon can be very low cost reinforcement material

    Growth of aligned carbon nanotubes on carbon microfibers by dc plasma-enhanced chemical vapor deposition

    Get PDF
    It is shown that unidirectionally aligned carbon nanotubes can be grown on electrically conductive network of carbon microfibers via control of buffer layer material and applied electric field during dc plasma chemical vapor deposition growth. Ni catalyst deposition on carbon microfiber produces relatively poorly aligned nanotubes with significantly varying diameters and lengths obtained. The insertion of Ti 5 nm thick underlayer between Ni catalyst layer and C microfiber substrate significantly alters the morphology of nanotubes, resulting in much better aligned, finer diameter, and longer array of nanotubes. This beneficial effect is attributed to the reduced reaction between Ni and carbon paper, as well as prevention of plasma etching of carbon paper by inserting a Ti buffer layer. Such a unidirectionally aligned nanotube structure on an open-pore conductive substrate structure may conveniently be utilized as a high-surface-area base electrodes for fuel cells, batteries, and other electrochemical and catalytic reactions

    Peculiarities of Spin Polarization Inversion at a Thiophene/Cobalt Interface

    Full text link
    We perform ab-initio calculations to investigate the spin polarization at the interface between a thiophene molecule and cobalt substrate. We find that the reduced symmetry in the presence of a sulfur atom (in the thiophene molecule) leads to a strong spatial dependence of the spin polarization of the molecule: The two carbon atoms far from the sulfur acquire a polarization opposite to that of the substrate, while the carbon atoms bonded directly to sulfur possess the same polarization as the substrate. We determine the origin of this peculiar spin interface property as well as its impact on the spin transport.Comment: Revised version. Accepted for publication in Applied Physics Letter
    corecore