354,383 research outputs found

    A mathematical model for assessment of material requirements for cable supported bridges: implications for conceptual design

    Get PDF
    Recent technological developments have led to improvements in the strengths of materials, such as the steel and wire ropes used in the construction of cable supported bridges. This, combined with technological advancements in construction, has encouraged the design of structures with increasing spans, leaving the question of material and environmental costs behind. This paper presents a refined mathematical model for the assessment of relative material costs of the supporting structures for cable-stayed and cable suspension bridges. The proposed model is more accurate than the ones published to date in that it includes the self weight of the cables and the pylons. Comparisons of material requirements for each type of bridge are carried out across a range of span/dip ratios. The basis of comparison is the assumption that each structure is made of the same material (steel) and carries an identical design load, q, exerted by the deck. Calculations are confined to a centre span of a three-span bridge, with the size of the span ranging from 500 m to 3000 m. Results show that the optimum span/dip ratio, which minimises material usage, is 3 for a cable-stayed (harp type) bridge, and 5 for a suspension structure. The inclusion of the self weight of cable in the analysis imposes limits on either the span, or span/dip ratio. This effect is quantified and discussed with reference to the longest cable-supported bridges in the world completed to date and planned in the future

    Practical considerations for enhanced-resolution coil-wrapped Distributed Temperature Sensing

    Get PDF
    Fibre optic distributed temperature sensing (DTS) is widely applied in Earth sciences. Many applications require a spatial resolution higher than that provided by the DTS instrument. Measurements at these higher resolutions can be achieved with a fibre optic cable helically wrapped on a cylinder. The effect of the probe construction, such as its material, shape, and diameter, on the performance has been poorly understood. In this article, we study data sets obtained from a laboratory experiment using different cable and construction diameters, and three field experiments using different construction characteristics. This study shows that the construction material, shape, diameter, and cable attachment method can have a significant influence on DTS temperature measurements. We present a qualitative and quantitative approximation of errors introduced through the choice of auxiliary construction, influence of solar radiation, coil diameter, and cable attachment method. Our results provide insight into factors that influence DTS measurements, and we present a number of solutions to minimize these errors. These practical considerations allow designers of future DTS measurement set-ups to improve their environmental temperature measurements

    Detection and Location of Underground Power Cable using Magnetic Field Technologies

    No full text
    The location of buried underground electricity cables is becoming a major engineering and social issue worldwide. Records of utility locations are relatively scant, and even when records are available, they almost always refer to positions relative to ground-level physical features that may no longer exist or that may have been moved or altered. The lack of accurate positioning records of existing services can cause engineering and construction delays and safety hazards when new construction, repairs, or upgrades are necessary. Hitting unknown underground obstructions has the potential to cause property damage, injuries and, even deaths. Thus, before commencing excavation or other work where power or other cables may be buried, it is important to determine the location of the cables to ensure that they are not damaged during the work. This paper describes the use of an array of passive magnetic sensors (induction coils) together with signal processing techniques to detect and locate underground power cables. The array consists of seven identical coils mounted on a support frame; one of these coils was previously tested under laboratory conditions, and relevant results have been published in [1]. A measurement system was constructed that uses a battery powered data acquisition system with two NI 9239 modules connected to the coil array, and controlled by a laptop. The system is designed to measure the magnetic field of an underground power cable at a number of points above the ground. A 3 by 3 m test area was chosen in one of our campus car parks. This area was chosen because the university’s utility map shows an isolated power cable there. Measurements were taken with the array in 16 different test positions, and compared with the values predicted for a long straight horizontal cable at various positions. Finally, error maps were plotted for different Z-coordinate values, showing the minimum fitting error for each position in this plane. One such map is shown in Figure 1; the low error values of 4-5% give a high degree of confidence that most of the measured signal is due to a cable near to these positions. This view is supported by the fact that the university’s utility map shows the cable at X = 1.4 m, and by amplitude measurements taken with a hand-held magnetic field meter

    On the Construction of Fiber-Optic Cables

    Full text link
    In recent years, much research has been devoted to the improvement of RAID; however, few have enabled the analysis of active networks. After years of structured research into thin clients, we prove the visualization of virtual machines. Our focus in this paper is not on whether red- black trees can be made flexible, omniscient, and modular, but rather on introducing an algorithm for context-free grammar (Toph)

    Urban construction and safety project

    Get PDF
    The purpose and functions of NASA technology applications temas (TAT) are described, with emphasis on the activities of the Urban and Construction and Safety Project. The transfer and implementation of technology is discussed in five activities. Topics include: flat conductor cable, NASA house and compendium, flood insurance studies, tornado studies, and the controller for stationary diesels

    Flat conductor cable commercialization project

    Get PDF
    An undercarpet flat conductor cable and a baseboard flat conductor cable system were studied for commercialization. The undercarpet system is designed for use in office and commercial buildings. It employs a flat power cable, protected by a grounded metal shield, that terminates in receptacles mounted on the floor. It is designed to interface with a flat conductor cable telephone system. The baseboard system consists of a flat power cable mounted in a plastic raceway; both the raceway and the receptacles are mounted on the surface of the baseboard. It is designed primarily for use in residential buildings, particularly for renovation and concrete and masonry construction

    Improved universal electrical connector

    Get PDF
    Universal electrical connector for use with various types of electric cable, inserts, and pin styles is described. Connector may be used over variety of environmental conditions. Details of construction are discussed. Illustrations of connector are included

    Integration and Conventional Systems at STAR

    Full text link
    At the beginning of the design and construction of the STAR Detector, the collaboration assigned a team of physicists and engineers the responsibility of coordinating the construction of the detector. This group managed the general space assignments for each sub-system and coordinated the assembly and planning for the detector. Furthermore, as this group was the only STAR group with the responsibility of looking at the system as a whole, the collaboration assigned it several tasks that spanned the different sub-detectors. These items included grounding, rack layout, cable distribution, electrical, power and water, and safety systems. This paper describes these systems and their performance.Comment: 17 pages, 6 figures, Contribution to a NIM Volume Dedicated to the Detectors and the Accelerator at RHI
    corecore