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Abstract 

Recent technological developments have led to improvements in the strengths of materials, such as 

the steel and wire ropes used in the construction of cable supported bridges.  This, combined with 

technological advancements in construction, has encouraged the design of structures with increasing 

spans, leaving the question of material and environmental costs behind.  This paper presents a refined 

mathematical model for the assessment of relative material costs of the supporting structures for 

cable-stayed and cable suspension bridges.  The proposed model is more accurate than the ones 

published to date in that it includes the self weight of the cables and the pylons. Comparisons of 

material requirements for each type of bridge are carried out across a range of span/dip ratios.  The 

basis of comparison is the assumption that each structure is made of the same material (steel) and 

carries an identical design load, q, exerted by the deck.  Calculations are confined to a centre span of 

a three-span bridge, with the size of the span ranging  from 500 m to 3000 m. Results show that the 

optimum span/dip ratio, which minimises material usage, is 3 for a cable-stayed (harp type) bridge, 

and 5 for a suspension structure. The inclusion of the self weight of cable in the analysis imposes 

limits on either the span, or span/dip ratio. This effect is quantified and discussed with reference to 

the longest cable-supported bridges in the world completed to date and planned in the future.  

 

Keywords: suspension bridges; cable-stayed bridge; material costs; span/dip ratio  
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1. Background 
 

Over the years, a number of studies related to the assessment of the volume of material and material 

costs in cable-stayed and suspension bridges have been produced.  A  relatively  simple model  used 

by French
1
, which excluded the self weight of cables and pylons, demonstrated that, with the cost of 

the cable material twice that of the pylons, the optimum span/dip ratio for the suspension bridges was 

9:1.  This prediction was based on the allowable stresses in the cables of 600N/mm
2
, and 120 N/mm

2
 

in the pylons, which values were significantly lower than the up-to-date strengths of 700N/mm
-2

 and 

160 N/mm
2
, respectively, as used by Gimsing

2
 and the author of this paper.  

 

The model proposed by Gimsing
2
, included the self weight of pylons, as this was viewed as 

important in the final assessment of the 'lightness' of the structure, but excluded the self weight of the 

cables. Surprisingly, it also excluded the additional weight of the deck required in the cable-stayed 

bridge to resist the substantial membrane forces that develop there. Based on these assumptions, the 

model predicted an optimum span/dip ratio for both suspension and cable-stayed (fan type) bridges 

with the main span of 500 m to be ~6.6.  This was based on material costs, assuming that the unit 

cost of steel in the pylons was the same for both systems, but the ratios of the unit price of cable to 

pylon were different:  1.75 in the case of the suspension bridge, and 2.5 for the cable-stayed structure. 

This optimum span/dip ratio was unchanged for the suspension bridge when the main span was 

doubled, i.e., equal to 1000 m. 

 

Earlier work by Podolny and Scalzi
3
 stated that the most economical span/dip ratio for the cable-

stayed bridges was 5:1, and 8:1 for the suspension type. It reported on the work of Leonhardt
4
, which 

produced a modification factor on the material volume used by the cable when the cable weight was 

included. Taking the span/dip ratio of 9:1 for the suspension bridge, a 5:1 for the cable-stayed one, 

and a central span of 3280 ft (1000 m), the proposed modification increased the cable steel 

requirements for the suspension bridge by 17%, but only by 5% for the cable-stayed structure.  

 The work quoted above highlights the issue of scale.  Parsons5 showed that on the basis of an 

approximate relationship between the cost per unit area of roadway and the span, suspension bridges 

were more economic for spans above 600m (the height of the pylons  was not given). He stressed the 

fact that the span of a suspension bridge was limited only by the tensile strength of the cable and this 

prime structural element is inherently stable, while the span of a cable-stayed structure is limited by 

the compressive strength of the deck which is inherently unstable.   

More recently, Croll6 offered a simple analysis of the relative usage of the material by cable-stayed 

(harp type) and suspension bridges, respectively.  In common with Gimsing
2
 and French

1
, the 
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calculation for the volume of the material was based on the design principle that the cross section of 

any load-carrying member should not be stressed beyond an assumed value of working stress. The 

analysis ignored the self weight of the cables and the pylons. Surprisingly, in the initial model, no 

distinction was made between the tensile strength of the cables and the pylons, and simply one value 

was used for both.  The modification of the model, following contributions from H.C. Dalton7 and 

M. J. French7, included not only material usage, but also material cost. The calculated material 

volumes were factored using a compound material and cost parameter, , expressed as a ratio of 

tensile to compressive stresses, further multiplied by a ratio of unit costs of cable to pylon. The factor 

 ranged between 1 and 5. After this modification, the results showed the suspension bridges to be 

more cost efficient than the cable-stayed ones, for span/dip ratio greater than 4.  They also showed an 

optimum span/dip ratio for a cable-stayed bridge to be between 2 and 3 and, for a suspension 

structure, between 4 and 7 (depending on the  factor).  

  
In view of the inconsistent and conflicting information produced to date, a more rigorous analysis of 

material usage (including material cost) is needed in the design of cable supported bridges. This 

paper addresses this problem by examining the subject more closely and presenting an analysis that is 

as close to reality as possible.  

 

 

2. Suspension bridge  

 

2.1. General 

 

Figure 1 shows the basic geometry of a suspension cable bridge in which L is the centre span of the 

bridge and h is the height of towers above the deck. The distribution of forces in the main structural 

elements is shown in Fig.1 (a).  

 

Fig .1.  Basic geometry of a suspension cable bridge 
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Fig. 1(a). Diagrammatic representation of forces in the main structural elements of the bridge 

 

The prediction of material usage is based on the centre span. The general assumptions are as follows: 

(i) the bridge is subjected to a uniformly distributed design deck load, q, the weight of the cables and 

the pylons; 

(ii) the shape adopted by the suspension cables is assumed to be a parabola. This shape corresponds 

to the case of a uniformly distributed load from the deck, q, and follows the usual assumption that 

hanger and cable weights are negligible compared to q;   

(iii) the hangers form a uniform 'curtain' suspended from the cables and stressed by q. It is shown 

later that the stress due to the self weight of hangers is negligible.  Hence, the amount of material 

used by them is simply proportional to the area under the parabolic cable;  

(iv) the cross section of the suspension cable is calculated by dividing the maximum tension force in 

the cable by an assumed constant value of working (tensile) stress, t; the product  of the cross 

section area and the length of the cable gives the volume of the material required; 

(iv) each pylon is assumed to carry a half of the deck weight, qL/2, the self weight of the cables and 

their own weight; their cross section area varies with height in such a manner as to ensure constant 

stress. 

 

2.2. Calculation of the volume of material used by hangers 

 

The hangers, modelled as a ‘curtain’ of individual strands, have thickness, t.  If h is the density of 

the hanger and Thng (z) is the tensile stress, the equation of vertical equilibrium of the hanger element, 

tdxdz, (Fig. 1(a)) is 
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                           (2.2.1) 

 

which gives 
        

  
    ,     or 

 

 

                                  (2.2.2)                                                                           

 

At the deck level,   

 

                ,             
 

 
 

 

and hence 

 

              
 

 
 

            (2.2.3) 

The thickness of the curtain is sized on the basis of the maximum stress, which occurs at z =h. With 

the assume maximum working stress, t,  

         
 

 
 , 

  

the thickness of the ‘curtain’ is  

 

  
 

       
 , 

            (2.2.4) 

where g is the gravitational constant.       

 

Denoting the area of the ‘curtain’ below the suspension cable by  Acurt, the total volume of the 

material used by the hangers, Vhng, susp  is  
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Introducing the  span/h ratio, r=L/h,  and noting  the term   
    

  
     to be small,  the above equation 

becomes 
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2.3 Volume of material used by the suspension cable 

 

The cable follows a parabolic shape and has a constant cross section Acbl.  It carries the weight of the 

deck and its own weight.  Therefore, for a symmetric structure, the volume of cable material,  Vcbl, 

susp,  is 

 

 cblcblsuspcbl LAV 2,  ,        (2.3.1) 

 

where Lcbl is the length of the cable measured from centre span (Lcbl=L/2).  For a parabola, 

2
2
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where 
L

h
a

4
 , and 

2
4

1 



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


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L

h
b . 

 

The cross section area of cable, Acbl , is given by  

  

 tcblcbl TA /
max

 ,        (2.3.3) 

where   
max

cblT is the maximum tension force in the cable at the pylon attachment, given by  
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and T0 is the horizontal component of the cable force, known to be constant. 

 

Since the slope of the curve is tan
8

2
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L

hx
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, then at the pylon attachment (at x = L/2),  

L

h
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4
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2pyl = b. 

 

Hence, eqn.(2.3.4) becomes b0
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and the vertical load on the pylon, atan 00 TT pyl  , due to the weight of the semi-span and self 

weight of the cables, is 
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where cbl is the density of the cable, and g the gravitational constant. 

 

Thus,  
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where T0
non-dim 

is a non-dimensional term in eqn (2.3.6). 

 

Consequently, the required cross section of cable is (eqns.2.3.3 and 2.3.4), 
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where 
dim

,

non

suspcblV  is a non-dimensional constant in (2.3.8) for a given L/h ratio. 

  

It can be seen from  eqn (2.3.6) that in order to get sensible values for T0 we must have 
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L
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                                                                               (2.3.9)    

 

A further discussion of the above restriction is given in Section 4.  

 

 

2.4 Volume of material used by the pylons 

 

Each pylon carries a half of the total load applied by the deck,  the self weight of cables from the 

centre span, and its own weight. The calculation for the volume of the material required by the pylons 

can be based on the assumption of constant stress, or a constant cross section along pylon's height.  

Pursuing the more rigorous approach based on the assumption of constant stress, leads to a set of 

calculations given below.   
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If pyl denotes the density of the pylon material,  Apyl the cross section area,  and F(z), a compression 

force at any cross section, then  vertical equilibrium gives 

 

0)(
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
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Thus,  the variation of the compressive force over the height of the pylon is (Fig. 1(a)) 
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Assuming a constant working stress, c ,  in the pylon,  

 )()( zAzF pylc           (2.4.3) 

and 
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c
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Separating the variables and integrating gives, 
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where C is a constant, which can be found from the condition that at z=h ,  
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where Fp is the maximum force applied to the top of the pylon by the weight of the decking and the 

cables, and is given by 
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The required cross section of pylon is now 
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which shows that  the cross section area does not vary linearly. 

 

The volume of the pylon material is, therefore 
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Expanding e
h

 -1 to third order, and substituting for Fp from (2.4.5) gives  
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After substitution for T0 from (2.3.6) and assuming c=t /  (in later comparisons,  is taken as 

700/160 ) 
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where dim

,

non

susppylV  is a non-dimensional term in (2.4.12). Thus,  the total volume of material used by the 

supporting elements of a suspension bridge is 
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or  
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3. Cable stayed bridge 

 

3.1 General 

 

The assumptions  made with respect of the cable stayed bridge shown in Figure 2 are similar to those 

made in respect of a suspension bridge. The basic approach to the calculation of material volume is 

the same, but the detailed calculations are somewhat different due to a difference in structural action 

of the bridge.  
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Fig. 2.  Basic geometry of a cable-stayed bridge 

 

The main assumptions and description of the model for the assessment of material requirements are 

as follows: 

 

(i) the bridge is subjected to a uniformly distributed deck load, q, and has to carry the weight of the 

cables and the pylons; 

 

(ii) the cables are represented by an equivalent ‘curtain’ of material. The thickness of the curtain is 

found as the ratio of the maximum tension to an assumed working (tensile) stress 

 t.  The volume of the curtain  is proportional to the area under the outermost cable;   

(iii) the bridge has to carry additional membrane forces transmitted by the cables to the deck. These 

are shown to vary from +qL2/8h to -qL2/8h , (Section 3.3 and Figure 2(b)).  With this arrangement,  a 

horizontal force of qL2/8h  will develop at the end supports, as in the case of the suspension bridge.  

(iv) pylons are assumed to carry a varying applied load over the height of the tower and have 

constant compressive stress.  

 

3.2 Volume of material used by the cables 

Assuming the cables are represented by a ‘curtain’ of constant thickness,  the volume of the material 

for  a half-span is  given by 

hLtV staycbl
2

1
,  ,             (3.2.1) 

 

where t is the thickness of the ‘curtain’, determined from the equilibrium equations that include cable 

weight. 

 

It is assumed that the  ‘curtain’ is composed of individual strands, in which the tension field varies 

along the length of each strand (Fig. 2(a).  
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Fig. 2(a) Diagrammatic representation of forces in the main cable and the pylon 

 

 If T(s) represent the force per unit width of the strand, then the vertical equilibrium of the strand 

element ds , which has a volume tdsdzcosα, mass density cbl, and width dzcos, is given by 
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Integrating (3.2.3) with respect to s gives: 
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where C is an arbitrary constant.  When  s = 0 (deck level) , )0(sin TC    

 

Vertical equilibrium at the deck level, gives 
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Substituting (3.2.6) into (3.2.4) gives 
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or 

)
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(
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1
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The maximum value of tension, Tmax,  corresponds to s =h/sinα    and thus 
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At the deck level, the cable weight is zero and, therefore, the tension is
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It can be seen  that the denominator in (3.2.9) can become zero, or  negative. This indicates that, at 

certain spans and heights, the stress due to the weight of the cable may  become equal to, or greater, 

than the allowable tensile stress,  unless a restriction on the geometry of the bridge is imposed.  This 

point is picked up in section 4, when discussing  span restrictions.  

 

Introducing a non-dimensional factor, t 
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, into (3.2.9) gives 
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the volume of the material used by the cables is 
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3.2.1 The case of varying cable thickness. 

 

An alternative  assessment of the cable usage can be made by assuming that t  varies along the pylon 

(depending on the attachment point), but remains constant for each individual strand.  In this case, the 

variable thickness, tvar is given by 

 
gz

q
t

cblt  


2var
sin

       (3.2.13)

 

The volume of each strand, Vstrand,  is ltvardzcos, and with l=z/sin 

 
tan

varzdzt
Vstrand   

 

and, therefore, the volume of the curtain material using varying thickness is  
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    (3.2.14)

 

The evaluation of the above integral gives the volume of cable material for 2 curtains, as 
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                (3.2.15)

 

 

Results obtained from the above equation showed a small reduction in the cable volume, compared to 

the case of the constant cross-section of cable curtain, given by eqn (3.2.11). For span  L=1000 m, for 

example,  the reduction is  4% and  6%  for r =3 and r= 5, respectively.  

 

3.3. Additional volume of the material in the deck 

 

The deck of the cable stayed bridge develops membrane forces, which can be determined using 

energy theorems. 
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Fig. 2(b). Diagrammatic representation of forces  in the uniformly loaded deck developing  tension and 

compression 

 

 Assuming that AB (Fig. 2(b)) of length x is acted upon by loads R and F (assumed tensile), then from 

equation of equilibrium, we have 

                
 

 
             (3.3.1) 

 

i.e.,  

                             (3.3.2) 

 

Substituting     
 

     
  from (3.2.8) gives  

 

   
  

    
             

              (3.3.3) 

 

For a deck of uniform cross-section A and Young’s modulus, E, the energy stored in span is  

 

    
    

   

   

 

 
 

   
    

  

    
    

   

 

 

                                                               (3.3.4) 

 

The energy stored must be a minimum (consistent with the constraints), and so, assuming a rigid 

attachment at the end, gives 
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from which    
  

  
  

     
 

  

  
 

   
 

 
   

  
 

                              

             (3.3.6) 

and  

    
  

    
 

   

  
 

   

  
 

   

  
   

  

 
  

             (3.3.7) 

At x=L/2,        
   

  
  which means that the outer part of the half-span is in compression, and the 

middle part, in tension. The change from tensile to compressive force over half-span, is shown in Fig. 

2 (b).  

 

The presence of the membrane forces requires an additional volume of deck material, Vd,stay given as 
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where d,t  and  d,c  are the allowable tensile and compressive stresses in the deck, respectively.  

Assuming the deck is made of the same material as the pylon, its allowable compressive  stress  is 

d,c  = c , with c = t/, as used previously. It is assumed further that the allowable compressive 

stress in the deck is 60% of the tensile one and hence  c =0.6d,t , or d,t =c /0.6 = (t/0.6) and, 

therefore,  
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      (3.3.9)

 

 

To enable a comparison between the two types of bridges, the deck weight, q, which includes dead 

and live load, has to be the same in each case. Therefore, the increase in deck weight in this case has 

to come at the expense of the live load. Thus, for the same design load, q, the cable stay bridge would 

have to carry a lower live load component of q.  
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3.4 Volume of material used by the pylons  

 

With reference to Fig. 2(a), if  F(z) is the compressive force in the pylon at z, then within the cross 

section, Apyl(z), the vertical equilibrium gives 
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Solving for Apyl(z) gives 
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where the constant C is found from the condition that at z = h, the cross-sectional area of the pylon 

vanishes to zero.   

Hence 
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and  the cross section area of the pylon is, 
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Thus, the volume  of the material required by the pylon is  

 

     







  2

11
sin

1
sin

)(
22

32

0

,

h
eh

gt
he

q
dzzAV h

c

cblh

c

h

pylstaypyl












  

              (3.4.6) 



17 

Expanding to third order, 
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               (3.4.8) 

 

The final volume of the material for the supporting elements in a cable-stayed bridge,  including self 

weight of the cables and pylons, and the additional volume of the deck material required to take the 

membrane forces,  is 
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                    (3.4.9) 

 

4. Restrictions on spans of suspension and cable-stayed bridges 

 

4.1 Suspension bridges 

 

From eqn (2.3.9), we have 

 

.0








 b
L

ga
t

cbl
cbl


  

 

Since a and b relate to the geometry of the bridge and Lcbl to the span, the above restriction imposes a 

limit on either the span, L,  for a given h, or vice-versa.  
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Let’s consider the effect of the span/dip ratio, r,  on L.  Following the data given in  [2] and [8],  the 

allowable tensile strength of cable, t , is taken as 700MPa, and the density of the cable, cbl g,  equal 

to 80kN/m
3
.  

Since a=4h/L=4/r , b=1+(4h/L)
2
=1+(4/r)

2
,   and c

t

cbl g 



 , then introducing  =4/r, it can be 

shown that the limiting span is 
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Figure 3 and Table 1 illustrate  the above relationship, giving maximum limits on span imposed by 

the weight of the cable. (Shaded area in Table 1 corresponds to the range of r used in practice).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Suspension cable bridges. Limits on span imposed by cable weight. (Table 1) 
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R=L/h L [m] 

2 23666 

3 18737 

4 15247 

5 12748 

6 10906 

7 9505 

8 8411 

10 6822 

12 5729 

14 4934 

 

Table 1.  Suspension cable bridges.  Limits on span imposed by cable weight 
 

 

For the span/dip ratio   r =14 , the limit on span calculated by the current method is  4934 m (just 

under 5000 m) . This finding puts into  question the feasibility of  building super-long suspension 

bridges of, say, 5000 m span.   As the results indicate, at this span, the relationship (2.3.9) breaks 

down, as the stress associated with the self weight of cable exceeds the allowable tensile stress,  t . 

Selecting a lower value of r, say r =10, would require the height of pylons  above the deck to reach 

500 m; a value approximately 50% higher than the tallest pylons built in the world to date. This is 

illustrated by the data shown in  Tables 2 and 3.   

 

 

Bridge name 

 

 

Main span 
Approx.  

Span/dip 

Max. Overall 

pylon height 

 

Location 

 

Completion 

date 

Akashi Kaikyo 1991 m 9.2 282.8 m Kobe Awaji route, 

Japan 

 

1998 

 

Xihoumen 

 

 

1650 m 

 

10.5 

 

211 m 
Zhoushan Archipelago, 

China 

 

2008 

 

Great Belt 

(Storebælt)  

 

 1624 m 

 

8.8 

 

254 m 

 

 

Halsskov-Sprogø, 

Denmark 

 

1998 

 

Runyang South 

 

 

1490 m 

 

9.6 

 

215 m 

 

Yangtze river, China 

 

2005 

Humber 1410 m 11.2 155 m Hull, UK 1981 

 

Table 2. A selection of largest (completed) suspension cable bridges around the world 
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Bridge name 

 

 

Main span 
Approx.  

Span/dip 

Max. Overall 

pylon height 

 

Location 

 

Completion 

date 

Jiangsu Sutong 1088 m 4.5 306 m Suzhou, Nantong, 

China 

 

2008 

 

Stonecutters 

 

 

1018 m 

 

4.5 

 

298 m 
Rambler Channel, 

Hong Kong 

 

2009 

 

Tatara 

 

 

890 m 

 

4.5 

 

220 m 

 

Seto Inland Sea, 

Japan 

 

1999 

 

Pont de 

Normandie 

 

 

856 m 

 

4 

 

215 m 

 

Le Havre, France 

 

1995 

 

Millau Viaduct 

 

 

342 m 

 

5 

 

343 m 
River Tarn, 

France 

 

2004 

 

Table 3.  A selection of largest (completed) cable-stayed bridges around the world 

 

Apart from a significant increase in aeroelastic problems reported in [9],  such a  project would 

require a cable of lower density, possibly varying cross-section area to reduce weight, and/or higher 

strength than available at present. 

 

4.2 Cable-stayed bridges 

 

From eqn. (3.2.9), we  have  
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Again, this is a unique result, obtained from the refined mathematical model, which  includes the 

contribution of cable weight to the stress field. This contribution must not exceed the allowable stress 

t . 

Using the same material properties as in the previous calculation (section 4.1),  and given that 
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   , where r=L/h, equation  (3.2.9)  can be used to calculate the limit for  L. This 
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The results illustrating the above relationship are given in Fig. 4 and Table 4. (Shaded area in Table 4 

corresponds to the  range of r used in practice).  

  

 

 

Fig. 4. Cable-stayed bridges. Limits on span imposed by cable weight. (Table 4) 

 

 
R=L/h L [m] 

2 8750 

3 8087 

4 7000 

5 6034 

6 5250 

7 4623 

8 4118 

10 3365 

12 2838 

14 2450 

 

Table 4.  Cable-stayed bridges.  Limits on span imposed by cable weight 

 

Gimsing
2
  discusses efficiency ratio of  a stay cable and builds a model which predicts limits on the 

span of catenary and suspension cables, due to the cable weight alone. The cables are assumed to 

Range of r 
used in 
practice 
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follow a catenary shape that becomes horizontal at the centre span. The results produced by this 

model  should not be interpreted as being applicable to  cable-stayed and suspension bridges, 

because, in te model,  the cross section area of cables is calculated from self weight of the cable 

alone. In bridge applications, the cables are stretched by the applied deck loading and their self-

weight. Futhermore, in a cable-stayed structure, the weight of cables is not concentrated in a single 

catenary, but distributed in  a number of cables, none of which adopts a horizontal line at the deck 

level.  In view of this,  it is not appropriate to compare results quoted in [2] with the ones presented 

here (sections 4.1 and 4.2),  which are relevant to the actual  bridge types.    

 

5. Examples   

 

The mathematical model derived in this paper provides a tool for the analysis of  material usage by 

each type of bridge over a range of span/dip ratios, and for a selection of spans.  

 

In all computational examples, the tensile strength of cable is taken as 1770MPa, and densities of the 

cable, deck, and the pylons as 80kN/m
3
. The  recommended factor of safety

8
 that complies with the 

Eurocode recommendation is 2.55, and this factor is to be 50% greater than that for structural steel. 

This gives  the allowable tensile strength of cable,   

t =700MPa.  With the factor of safety for structural steel equal to 1.7 (50% less than that for the 

cable), the allowable tensile strength of structural steel is assumed to be  

460/1.7=270 MPa. The  allowable  compressive stress in the deck and pylons is assumed to be 60% 

lower, giving c = 160 MPa.  Thus, the ratio of the allowable tensile stress in the cable to the 

compressive stress in structural steel  is   = 700/160 = 4.375. 

 

5.1 Suspension bridge 

 

Figure 5 and Table 5 show the material volumes for a 1000 m span, predicted by eqns.  (2.2.68), 

(2.3.8), and  (2.4.12) - (2.4.14). It can be seen that the structure reaches an overall minimum, in terms 

of material usage, for the span/dip ratio, r, equal to 5. The range of  r used in practice lies outside this 

ratio. For all practical values of r, the cable volume constitutes the largest component of the overall 

volume of material required by the supporting elements.  
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Recognising the fact that, in practice, the unit cost of cable is higher than that of pylon, Figure 6 

presents the results for cases of Ccbl/Cpyl =1, 1.5, and 2.0 respectively, where Ccbl is the unit cost of 

cable+hanger, and Cpyl that of pylon. The results  for a 1000 m span show that  the increases of 

cable+hanger unit costs  by 50%, and 100% , relative to those of structural steel (pylons) have not 

altered the value of the optimum span/dip ratio, r, which remains as 5. They also show that for cases 

of Ccbl/Cpyl =1.5 and 2.0, with  r =10, there is an increase of 30%-40%  in the cost of material used by 

the supporting elements, compared to the optimum r =5.  This increase reaches 50%- 60% for the 

case of r =12. 

Fig. 6.  Suspension bridge of 1000 m span. The effect of unit cost of cable relative to that of  structural steel 

(pylon) on overall material costs 
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Fig. 5.   Suspension bridge of 1000 m span. Material volumes. (Table 5) 
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 Figure 7 examines the effect of bridge size on material requirements, by using spans varying 

between 500 m and 3000 m. It can be seen that the minimum usage of the material corresponds,  

again, to  r = 5.  For spans of 500 m and 1000, there is a modest increase in the volume of the 

material over the range of  r used in practice. The increases in the volume of the material for spans 

2000 m (and higher), become significant for r =10 - 12.  These increases are: approximately 30% - 

60%,  for span of 2000 m, and 40%-100% for  span of 3000 m.  

 

Fig. 7. Suspension bridge. Effect of  span size on the overall volume of material 

 

The observations presented above relate to the costs of materials of supporting elements only, not the 

overall costs that would normally include construction.  

 

5.2 Cable-stayed bridge 

 

Figure 8 and Table 5 show the material volumes for a 1000 m span, given  by eqns.  (3.2.12),  (3.3.9),  

(3.4.8)= (3.4.9).  

The results show that the structure reaches an overall minimum, in terms of material usage, for the 

span/dip ratio, r, equal to 3.  Again, the range of  r used in practice lies just  outside this ratio. For 

values of r between 4 and 5, and the stress pattern considered in Fig. 2(b), the additional deck weight  

accounts for a significant overall volume of the supporting elements, and a similar observation can be 

made with regard to the cable volume.  In order to carry out meaningful comparisons with the 

suspension bridge, the increase in deck weight in the cable-stayed bridge has to come at the expense 

of the live load component of q. 
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Fig. 8.  Cable-stayed bridge of 1000 m span. Material volumes. (Table 5) 

 

 
Suspension structure 

 

Cable - stayed structure 

 1/r*V
non-dim

 1/r* V
non-dim

 

r=L/h Hangers 

 

Cable Pylons Total Cables Deck 

weight 

Pylons Total 

2 0.1667 0.9130 1.3714 2.4511 0.5645 0.4375 0.9044 1.9064 

3 0.1111 0.8543 0.8708 1.8362 0.6182 0.6562 0.5038 1.7782 

4 0.0833 0.8946 0.6420 1.6199 0.7292 0.8750 0.3524 1.9566 

5 0.0667 0.9772 0.5115 1.5554 0.8690 1.0938 0.2746 2.2374 

6 0.0556 1.0837 0.4273 1.5666 1.0294 1.3125 0.2276 2.5695 

7 0.0476 1.2064 0.3686 1.6226 1.2077 1.5312 0.1963 2.9352 

8 0.0417 1.3413 0.3254 1.7084 1.4033 1.7500 0.1740 3.3273 

10 0.0333 1.6403 0.2663 1.9399 1.8496 2.1875 0.1448 4.1819 

12 0.0278 1.9730 0.2281 2.2289 2.3805 2.6250 0.1272 5.1327 

14 0.0238 2.3372 0.2016 2.5626 3.0172 3.0625 0.1162 6.1959 

Table 5. Comparison of material volumes for 1000 m span: suspension bridge versus cable-stayed 

 

 

In assessing material costs, values of  Ccbl/Cpyl  of 1, 1.5, and 2.0 are used, as in the case of the 

suspension bridge. The results of the analysis for the 1000 m span are shown in Figure 9. 
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Fig. 9. Cable-stayed bridge of 1000 m span.  The effect of unit cost of cable relative to that of structural steel 

(pylon) on overall material costs 

 

 It can be seen that the increases of cable  unit costs  by 50%, and 100% , relative to those of 

structural steel  have not altered the value of the optimum span/dip ratio, which remains as 3.  For  

the case of Ccbl/Cpyl  equal to 1.5 and  2.0, with  r =5, there is an approximately 30%-40%  increase in 

the cost of material used by the supporting elements, compared to the optimum value of r equal to 3.   

 

The effect of size of the bridge on the material requirements is examined in Fig. 10. The results show 

that the minimum usage of the material corresponds to, again,   r = 3. When the span increases from  

500 m  to  1000 m, there are modest increases in the volume of the material, over the range of r used 

in practice.  These increases become  significant for larger spans, e.g., approximately 35%  for the 

span of 2000 m.  

   

Again, the above observations relate to the costs of materials of supporting elements only, not the 

overall costs that would normally  include construction.  
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Fig. 10 . Cable-stayed bridge. Effect of span size on the overall volume of material 

 

5.3 Suspension bridge versus cable-stayed 

 

A comparison of material volumes for the supporting elements in the two types of bridges,  both  of  

1000 m span,  is given in Fig. 11. 

 

 

Fig. 11. Comparison of material volumes for a 1000 m span: suspension bridge versus cable-stayed 
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 It can be seen that for the relevant ranges of r used in practice, i.e., 3.5-5 for the cable stayed bridges, 

and 8-12, for the suspension bridges, the latter require less material.  When comparing the results for 

optimum ratios: r =5 (in the case of the suspension bridge), and r =3 (for the cable- stayed), they 

show that a suspension bridge requires approximately 14% less material.  A comparison of the 

material costs is given in Figure 12.  

 

 

Fig. 12. Comparison of material costs for a 1000 m span: suspension bridge versus cable-stayed. 

 

Considering the common range of span/dip ratios used in practice, it can be seen that suspension 

bridges with r =8-10 are marginally less expensive than the cable stayed ones with r=5, but become 

30% , or more, expensive  for r =12 and above. Interestingly, when comparing the results for the 

optimum span/dip ratios, i.e.,  r =3 for the cable-stayed bridge, and r =5 for the suspension structure, 

the two appear to have similar material costs for Ccbl/Cpyl =1.5,  but the suspension bridge becomes 

more expensive when Ccbl/Cpyl =2.0.  

 

In the above comparisons, it is important to note again that for the same design load  q, the dead 

weight component is greater in the cable-stayed bridge, due to the additional weight of decking. This 

leaves the live load component reduced by the equivalent amount.  In view of this, the suspension 

bridge is a more material efficient structure.  
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6. Summary and  Conclusions 

 

The paper presents a refined mathematical model for the relative assessment of material requirements 

by the supporting elements in suspension and cable-stayed bridges. It is  assumed that each structure 

is made of the same material (steel) and carries an identical design load, q, exerted by the deck.  

Cables are assumed to be of constant cross-section. In the case of the suspension bridge, they follow 

a parabolic shape, and, in the case of the cable-stayed structure, straight lines (approximation to 

shallow catenaries).  Calculations are confined to a centre span of a three-span bridge, with the size 

of the span ranging  from 500 m to 3000 m. The cross-section of pylons is such as to maintain 

constant stress. 

 

Results show that the optimum span/dip ratio, which minimises material usage, is 3 for a cable-stayed 

(harp type) bridge, and 5 for a suspension structure.  These values fall into the range quoted by 

Croll
7
, but  lie outside the  ranges of span/dip ratios used in practice where  construction costs and 

practical limits on the pylon height are considered.  With regard to the latter, data given in Tables 2 

and34, concerning  the largest suspension
10

 and cable-stayed bridges
11

 in the world, shows  that the 

highest pylons built to date are for the Millau Viaduct (343 m overall).  This record may be broken 

by the proposed Strait of Messina suspension bridge
12

 with a 3,300 m main span, the overall height of 

pylons of 382.6 m, and a span/dip ratio r =10.4.  

 

The inclusion of the self weight of cable in the analyses produced quantifiable limits on spans of the 

two types of structures at which the stresses generated by cable weight alone could exceed the limit 

on the allowable tensile strength of the cable. In the case of the suspension bridge, this limit is just 

less than 5000 m. This result raises a question over the feasibility of  super-long bridges of 5000 m 

planned for the future
9
 with currently available material densities and strengths of cable.   

 

A comparison of material costs of the supporting elements in the suspension and cable-stayed bridges 

revealed that, for the range of span/dip ratios used in practice,  the two costs are  similar when the 

unit cost of cable is 50% higher than that of the pylons, but the suspension bridge becomes more 

expensive when this cost is doubled. 

 

It should be noted that, for the same design load  q, the dead weight component of q is greater in the 

cable-stayed bridge, due to the additional weight of decking necessary to take the membrane forces. 

This automatically  lowers the live load component of q for the cable-stayed bridge.   In view of this, 

it can be concluded that the suspension bridge is a more material efficient structure.  
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The overall results highlight the importance of the span/dip ratio in regulating the volume and 

cost of the material required.  In the case of the suspension bridge  of 1000 m main span, they show 

that for cases of Ccbl/Cpyl=1.5 and 2.0, with  r =10, there is an increase of 30%-40%  in the cost of 

material used by the supporting elements, when compared with the results for the optimum  r =5. 

This increase reaches 50%- 60% for the case of r =12.  A similar analysis for the 2000 m  span gives 

increases between 40%-60% and 70%-90% , respectively. In the case of a cable-stayed bridge, a 

comparison of material costs  for the optimum r =3, and  results obtained for  r =5  show similar 

increases (30%-40%) for the span of 1000 m.  

 Larger spans lead to a high span/dip ratio, because of practical limits of pylon heights. This, 

increases material requirements and, consequently, raises  sustainability issues and concerns over 

environmental costs.   
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