424,665 research outputs found

    Synthesis of Copper Oxide Nanoparticles in Droplet Flow Reactors

    Get PDF
    Synthesis of metal oxide nanoparticles within droplet flow reactors is advantageous over batch synthesis due to the elimination of concentration and temperature gradients inside the reactor and prevention of reactor fouling. We present results on the synthesis of copper oxide nanoparticles using aqueous droplets of copper acetate and acetic acid inside a bulk stream of sodium hydroxide in 1-octanol. Varying the copper acetate, acetic acid, and sodium hydroxide concentration resulted in needle-like and plate-like nanoparticles of varying sizes. The rate of mass transfer from the bulk to the droplet phase was found to increase with flow rate and addition of surfactants

    The influence of structural defects on intra-granular critical currents of bulk MgB2

    Full text link
    Bulk MgB2 samples were prepared under different synthesis conditions and analyzed by scanning and transmission electron microscopy. The critical current densities were determined from the magnetization versus magnetic field curves of bulk and powder-dispersed-in-epoxy samples. Results show that through a slow cooling process, the oxygen dissolved in bulk MgB2 at high synthesis temperatures can segregate and form nanometer-sized coherent precipitates of Mg(B,O)2 in the MgB2 matrix. Magnetization measurements indicate that these precipitates act as effective flux pinning centers and therefore significantly improve the intra-grain critical current density and its field dependence.Comment: 4 pages, 4 figures, to be published in IEE Transactions in Applied Superconductivit

    Phase control of La2CuO4 in thin-film synthesis

    Full text link
    The lanthanum copper oxide, La2CuO4, which is an end member of the prototype high-Tc superconductors (La,Sr)2CuO4 and (La,Ba)2CuO4, crystallizes in the "K2NiF4" structure in high-temperature bulk synthesis. The crystal chemistry, however, predicts that La2CuO4 is at the borderline of the K2NiF4 stability and that it can crystallize in the Nd2CuO4 structure at low synthesis temperatures. In this article we demonstrate that low-temperature thin-film synthesis actually crystallizes La2CuO4 in the Nd2CuO4 structure. We also show that the phase control of "K2NiF4"-type La2CuO4 versus "Nd2CuO4"-type La2CuO4 can be achieved by varying the synthesis temperature and using different substrates.Comment: 4 pages, 5 figures, submitted to PRB, revte

    Synthesis and Bulk Properties of Oxychloride Superconductor Ca2-xNaxCuO2Cl2

    Full text link
    Polycrystalline samples and submillimeter size single crystals of Na-doped Ca2CuO2Cl2 have been synthesized under high pressure. A series of experiments showed that the Na content depends not only on the pressure during the synthesis but also on the synthesis temperature and time. From a comparison of the Na-CCOC data with those of structurally related La214 cuprate superconductors we concluded that chlorine at the apical site is less effective that oxygen in supplying charge carriers to the CuO2 plans. As a result, the coupling between the CuO2 planes is weakened, the transition temperature Tc is reduced and the anisotropic nature is enhanced.Comment: 7 pages, 7 figures, 1 table, presenthed at the Eucas 2007 conference. Accepted for "Journal of Physics: Conference Series (JPCS)" 2008 and European News Forum, Issue 3 (2008

    Rapid surfactant-free synthesis of Mg(OH)2 nanoplates and pseudomorphic dehydration to MgO

    Get PDF
    Magnesium hydroxide nanoplates ca. 50 nm in thickness can be prepared over minute timescales via hydrothermal synthesis in a multimode cavity (MMC) microwave reactor. This approach allows ca. 1 g of single-phase Mg(OH)2 to be synthesised in under 3 minutes without the requirement of surfactants or non-aqueous solvents. The hydroxide nanomaterial dehydrates at temperatures >200 K below that of the equivalent bulk material and can be utilised as a precursor for the pseudomorphic synthesis of nanoplates of MgO as investigated by TG-DTA-MS, XRD and SEM measurements. Equally, the pseudomorphic synthesis can be performed by irradiating the Mg(OH)2 nanomaterial with microwaves for 6 minutes to produce single phase MgO
    • …
    corecore