1,863,090 research outputs found
The labial gene is required to terminate proliferation of identified neuroblasts in postembryonic development of the Drosophila brain
The developing brain of Drosophila has become a useful model for studying the molecular genetic mechanisms that give rise to the complex neuronal arrays that characterize higher brains in other animals including mammals. Brain development in Drosophila begins during embryogenesis and continues during a subsequent postembryonic phase. During embryogenesis, the Hox gene labial is expressed in the developing tritocerebrum, and labial loss-of-function has been shown to be associated with a loss of regional neuronal identity and severe patterning defects in this part of the brain. However nothing is known about the expression and function of labial, or any other Hox gene, during the postembryonic phase of brain development, when the majority of the neurons in the adult brain are generated. Here we report the first analysis of Hox gene action during postembryonic brain development in Drosophila. We show that labial is initially expressed in six larval brain neuroblasts, of which only four give rise to the labial expressing neuroblast lineages present in the late larval brain. Although MARCM-based clonal mutation of labial in these four neuroblast lineages does not result in an obvious phenotype, a striking and unexpected effect of clonal labial loss-of-function does occur during postembryonic brain development, namely the formation of two ectopic neuroblast lineages that are not present in wild-type brains. The same two ectopic neuroblast lineages are also observed following cell death blockage and, significantly, in this case the resulting ectopic lineages are Labial-positive. These findings imply that labial is required in two specific neuroblast lineages of the wildtype brain for the appropriate termination of proliferation through programmed cell death. Our analysis of labial function reveals a novel cell autonomous role of this Hox gene in shaping the lineage architecture of the brain during postembryonic development
Recommended from our members
Human in vitro models for understanding mechanisms of autism spectrum disorder.
Early brain development is a critical epoch for the development of autism spectrum disorder (ASD). In vivo animal models have, until recently, been the principal tool used to study early brain development and the changes occurring in neurodevelopmental disorders such as ASD. In vitro models of brain development represent a significant advance in the field. Here, we review the main methods available to study human brain development in vitro and the applications of these models for studying ASD and other psychiatric disorders. We discuss the main findings from stem cell models to date focusing on cell cycle and proliferation, cell death, cell differentiation and maturation, and neuronal signaling and synaptic stimuli. To be able to generalize the results from these studies, we propose a framework of experimental design and power considerations for using in vitro models to study ASD. These include both technical issues such as reproducibility and power analysis and conceptual issues such as the brain region and cell types being modeled
Globalization, Brain Drain and Development
This paper reviews four decades of economics research on the brain drain, with a focus on recent contributions and on development issues. We
first assess the magnitude, intensity and determinants of the brain drain, showing that brain drain (or high-skill) migration is becoming the dominant pattern of international migration and a major aspect of globalization. We then use a stylized growth model to analyze the various channels through which a brain drain affects the sending countries and review the evidence on these channels. The recent empirical literature shows that high-skill emigration need not deplete a country's human capital stock and can generate positive network externalities. Three case studies are also considered: the African medical brain drain, the recent exodus of European scientists to the United States, and the role of the Indian diaspora in the development of India's IT sector. We conclude with a discussion of the implications of the analysis for education, immigration, and international taxation policies in a global context.
Globalization, Brain Drain and Development
This paper reviews four decades of economics research on the brain drain, with a focus on recent contributions and on development issues. We first assess the magnitude, intensity and determinants of the brain drain, showing that brain drain (or high-skill) migration is becoming the dominant pattern of international migration and a major aspect of globalization. We then use a stylized growth model to analyze the various channels through which a brain drain affects the sending countries and review the evidence on these channels. The recent empirical literature shows that high-skill emigration need not deplete a country’s human capital stock and can generate positive network externalities. Three case studies are also considered: the African medical brain drain, the recent exodus of European scientists to the United States, and the role of the Indian diaspora in the development of India’s IT sector. We conclude with a discussion of the implications of the analysis for education, immigration, and international taxation policies in a global context.brain drain, international migration, globalization
Environmental Effects On Drosophila Brain Development And Learning
Brain development and behavior are sensitive to a variety of environmental influences including social interactions and physicochemical stressors. Sensory input in situ is a mosaic of both enrichment and stress, yet little is known about how multiple environmental factors interact to affect brain anatomical structures, circuits and cognitive function. In this study, we addressed these issues by testing the individual and combined effects of sub-adult thermal stress, larval density and early-adult living spatial enrichment on brain anatomy and olfactory associative learning in adult Drosophila melanogaster. In response to heat stress, the mushroom bodies (MBs) were the most volumetrically impaired among all of the brain structures, an effect highly correlated with reduced odor learning performance. However, MBs were not sensitive to either larval culture density or early-adult living conditions. Extreme larval crowding reduced the volume of the antennal lobes, optic lobes and central complex. Neither larval crowding nor early-adult spatial enrichment affected olfactory learning. These results illustrate that various brain structures react differently to environmental inputs, and that MB development and learning are highly sensitive to certain stressors (pre-adult hyperthermia) and resistant to others (larval crowding). © 2018. Published by The Company of Biologists Ltd
At risk of being risky: The relationship between "brain age" under emotional states and risk preference.
Developmental differences regarding decision making are often reported in the absence of emotional stimuli and without context, failing to explain why some individuals are more likely to have a greater inclination toward risk. The current study (N=212; 10-25y) examined the influence of emotional context on underlying functional brain connectivity over development and its impact on risk preference. Using functional imaging data in a neutral brain-state we first identify the "brain age" of a given individual then validate it with an independent measure of cortical thickness. We then show, on average, that "brain age" across the group during the teen years has the propensity to look younger in emotional contexts. Further, we show this phenotype (i.e. a younger brain age in emotional contexts) relates to a group mean difference in risk perception - a pattern exemplified greatest in young-adults (ages 18-21). The results are suggestive of a specified functional brain phenotype that relates to being at "risk to be risky.
- …
