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It has been said that people with autism suffer from a lack of
“central coherence,” the cognitive ability to bind together a jum-
ble of separate features into a single, coherent object or concept
(Frith, 1989). Ironically, the same can be said of the field of au-
tism research, which all too often seems a fragmented tapestry
stitched from differing analytical threads and theoretical pat-
terns. Defined and diagnosed by purely behavioral criteria, au-
tism was first described and investigated using the tools of behav-
ioral psychology. More recent years have added brain anatomy
and physiology, genetics, and biochemistry, but results from
these new domains have not been fully integrated with what is
known about autistic behavior. The unification of these many
levels of analysis will not only provide therapeutic targets for
prevention and remediation of autism but can also provide a test
case for theories of normal brain and cognitive development.
Autism research therefore has much to learn from and much to
offer to the broader neuroscience community.

Clinical features
Clinically, autism is defined by a “triad” of deficits comprising
impaired social interaction, impaired communication, restricted
interests, and repetitive behaviors. Although in some cases speech
never develops fully or never develops at all, in other cases, speech
may be present but so inflexible and unresponsive to context that
it is unusable in normally paced conversation; often, speech is
limited to echolalia or confined to narrow topics of expertise in
which discourse can proceed without conversational interplay.
The communicative impairment extends also to nonverbal sig-
nals such as gaze, facial expression, and gesture. Social behaviors,
too, are beset by a lack of flexibility and rapid coordination: chil-
dren with autism do not coordinate attention between objects of
mutual interest and the other people who may be interested in
them, often engage in “parallel play” at the edge of a group rather
than joining in cooperative play, and do not engage in pretend
play. Intense and narrowly focused interests tend to concentrate
on systems (Baron-Cohen, 2002) that operate deterministically
and repeatably according to tractable sets of rules, whether these

are abstract and complex systems such as computers or role-
playing games or very concrete and simple systems such as toilets
or washing machines. Critical to identifying the causal factors of
autism, and key to its relevance to normal development, is the
recognition that autism is actually the extreme of a spectrum of
abnormalities. Milder phenotypes on this spectrum include As-
perger syndrome (Wing, 1981) in which language is relatively
unimpaired, and the “Broader Autism Phenotype” in which
characteristic cognitive traits are present subclinically (Dawson et
al., 2002). The combination of this broad variation of phenotypes
and a 60 –90% concordance rate in identical twins (Bailey et al.,
1995) suggests a large number of genetic and environmental bi-
asing factors (Muhle et al., 2004).

A basis in neural connectivity?
In addition to the central coherence paradigm, autism has been
variously characterized as a deficit of executive function (Ozonoff
et al., 1991), complex information processing (Minshew et al.,
1997), theory of mind (Baron-Cohen et al., 1985), and empathy
(Baron-Cohen, 2002). Each of these theories is a valid description
of many aspects of the autistic syndrome but each, in answering
unsolved questions at one level of explanation, introduces them
at another. Recent attempts at a theoretical synthesis have fo-
cused on abnormal neural connectivity, and, superficially, there
seems some disagreement as to whether this abnormality involves
a surfeit (Rubenstein and Merzenich, 2003; Belmonte et al., 2004)
or a deficit (Brock et al., 2002; Just et al., 2004) of connectivity.
The picture is complicated by the fact that the term “connectiv-
ity” admits more than a single meaning. Conceptually, we can
differentiate local connectivity within neural assemblies from
long-range connectivity between functional brain regions. On
another axis, we can also separate the physical connectivity asso-
ciated with synapses and tracts from the computational connec-
tivity associated with information transfer. Physically, in the au-
tistic brain, high local connectivity may develop in tandem with
low long-range connectivity (Just et al., 2004), perhaps as a con-
sequence of widespread alterations in synapse elimination and/or
formation (Sporns et al., 2000). Furthermore, indiscriminately
high physical connectivity and low computational connectivity
may reinforce each other by failing to differentiate signal from
noise (Rubenstein and Merzenich, 2003; Belmonte et al., 2004)
(Fig. 1). This model is consistent not only with the impairments
in higher-order cognition described by the diagnostic triad but
also with impairments of motor coordination (Teitelbaum et al.,
1998), perceptual abnormalities such as high visual motion co-
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herence thresholds (Milne et al., 2002) and broad tuning of au-
ditory filters (Plaisted et al., 2003), abnormal growth within re-
gions of local but not long-range white-matter projections
(Herbert et al., 2004), and the substantial comorbidity of epilepsy
with autism (Ballaban-Gil and Tuchman, 2000).

Functional anatomy in an abnormally wired brain
How can we test and refine this model of reduced information
transfer as a consequence of local overconnectivity and long-
range underconnectivity? One experimental approach is the
physiological study of attention in autism using methods such as
functional magnetic resonance imaging (fMRI) and evoked po-
tentials. In an overconnected network, sensory inputs should
evoke abnormally large activations for attended and unattended
stimuli alike, giving rise within sensory regions to an overall in-
crease in activation but a reduction in the selectivity of this acti-
vation, and potentially incurring a high load at later stages of
perceptual processing as distractors are differentiated from tar-
gets. Conversely, brain regions subserving integrative functions
will be cut off from their normal inputs and should therefore
manifest reductions in activation and in functional correlations
with sensory regions. A combination of EEG (Belmonte, 2000)
and fMRI (Belmonte and Yurgelun-Todd, 2003) measures in a
task of visual spatial attention demonstrates exactly this pattern.
Furthermore, new data suggest abnormally strong activation in
parietal cortex during suppression of distractors, at the same time
as integrative regions in prefrontal and medial temporal cortices
are abnormally quiescent (Belmonte and Baron-Cohen, 2004).
Non-autistic brothers of people with autism seem to share the
prefrontal and medial temporal hypoactivation but not the pos-
terior hyperactivation, suggesting that low activity in integrative
brain regions may be an endophenotype reflecting familial pat-
terns of brain organization that may place individuals at height-
ened risk for autism.

The cerebellum and development of abnormal connectivity
Particularly implicated in deficits of long-range connectivity and
coordination of cognitive functions is the cerebellum, one of the
most common sites of anatomic abnormality in autism
(Courchesne, 1997; Courchesne and Pierce, 2002). MRI mor-
phometry reveals hypoplasia of the cerebellar vermis and hemi-
spheres, and autopsy studies report reductions in numbers of
cerebellar Purkinje cells. Moreover, recent genetic (Gharani et al.,
2004) and MRI-behavior correlation (Akshoomoff et al., 2004;
Kates et al., 2004) studies suggest that cerebellar abnormality may
play a more central role in autism than previously thought. Neu-
robehavioral studies have shown associations between cerebellar
anatomic abnormality and certain motor, cognitive, and social
deficits (Haas et al., 1996; Harris et al., 1999; Townsend et al.,
1999; Pierce and Courchesne, 2001).

Functionally, in autism, cerebellar activation is abnormally
low during a task of selective attention (Allen and Courchesne,
2003) and abnormally high during a simple motor task (Allen et
al., 2004). Both of these functional abnormalities correlate signif-
icantly with reduced size of cerebellar subregions, and it seems
likely that this structure–function correspondence extends to the
microscopic level and in particular to the reduction in Purkinje
cell numbers. Such a reduction would release the deep cerebellar
nuclei from inhibition, producing abnormally strong physical
connectivity and potentially abnormally weak computational
connectivity along the cerebello-thalamocortical circuit. This al-
tered pattern of cortical excitation may produce aberrant
activity-dependent patterning and may thus be related to find-
ings of abnormal individual variability in cortical maps for motor
function (Müller et al., 2001) and face processing (Pierce et al.,
2001) and to abnormal overgrowth in frontal lobes (Carper and
Courchesne, 2000).

Coordinated brain activity and the development of
temporal binding
fMRI can capture inter-regional correlations on a timescale of
seconds, but what about neural connectivity on a shorter time-
scale? Brock et al. (2002) proposed that underconnectivity be-
tween separate functional brain regions in autism might be re-
flected in a lack of EEG synchrony in the gamma band (30 – 80
Hz). In normal subjects, gamma activity is modulated by a variety
of integrative processes, including feature binding (Tallon-
Baudry et al., 1998), top-down feature selection (Hermann and
Mecklinger, 2001), attention (Müller et al., 2000), face processing
(Keil et al., 1999; Rodriguez et al., 1999), emotional arousal (Keil
et al., 2001), and memory rehearsal (Tallon-Baudry et al., 1998,
1999). We are in the process of testing Brock’s hypothesis using a
delayed match-to-sample task, and preliminary data suggest ab-
normality of gamma activity over frontal cortex and visual pro-
cessing areas during both stimulus encoding and memory re-
hearsal. Decreased and/or delayed gamma activation would
suggest disrupted neural signaling and would support the hy-
pothesis of abnormal regional activation patterns.

Linking altered structure and function with altered
neural development
Neuropathological studies of cerebral cortex in autism indicate
abnormalities of synaptic and columnar structure (Williams et
al., 1980; Casanova et al., 2002) and of neuronal migration (Bailey
et al., 1998a). MRI morphometry in young children with autism
reveals excessive volume of cerebrum or cerebral white matter
(Courchesne et al., 2001; Sparks et al., 2002; Herbert et al., 2003)
or increased total brain volume (Piven et al., 1995; Aylward et al.,

Figure 1. Potential effects of network connectivity patterns on brain activation. In the net-
work on the left, a combination of strong local connectivity within delimited groups of neural
units and selective long-range connectivity between local groups constitutes a computational
structure within which information can be efficiently represented and efficiently propagated.
Inputs (double arrows) evoke representations that are easily differentiable from noise (single
arrow) and can be linked across regions, yielding high computational connectivity. In the net-
work on the right, strongly connected subregions are not appropriately delimited and differen-
tiated, and computationally meaningful long-range connections fail to develop. The brain im-
ages at bottom, from a visual attention task, display distributed patterns of functional
activation in the normal brain (left) and abnormally intense and regionally localized activation
in the autistic brain (right), a pattern that may stem from such differences at the network level.
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2002). The absence of such a volume difference in adults
(Courchesne et al., 2001; Aylward et al., 2002) suggests that early
hyperplasia in autism is followed by a plateau during which brain
growth in normal subjects catches up. Retrospective analyses of
head circumference measurements suggest that much of the
overgrowth occurs postnatally within the first 6 –14 months
(Courchesne et al., 2003), coinciding with what is normally a
period of exuberant synaptogenesis, dendritic arborization, and
ongoing myelination. Regionally, frontal lobes show the greatest
degree of enlargement and occipital lobes the least (Carper et al.,
2002; Piven, 2004), and, within the frontal lobe, the dorsolateral
convexity shows significant overgrowth, whereas precentral gy-
rus and orbital cortex are not robustly affected (Carper and
Courchesne, 2004). Thus, the cortical areas most affected are
precisely those broadly projecting, phylogenetically and ontoge-
netically late-developing regions that are essential to complex
cognitive functions such as attention, social behavior, and
language.

Fragile X syndrome and autism: are there common
mechanisms in the development of synaptic connectivity?
The early developmental timing of brain overgrowth in autism,
the neuropathological indications of altered synaptic structure,
and the considerable dependence on genetics are especially inter-
esting in light of the presence of autistic behavior in fragile X
syndrome (FXS), a disorder with a known genetic cause and sub-
stantial symptomatic overlap with autism. Approximately one-
quarter to one-third of people with FXS show the symptoms of
autism (Bailey et al., 1998b; Rogers et al., 2001). FXS is caused by
the silencing of a single gene (FMR1) (Pieretti et al., 1991) that
codes for the fragile X mental retardation protein (FMRP), an
RNA binding protein (Ashley et al. 1993) whose absence presum-
ably alters expression of the genes associated with its mRNA car-
goes. Thus, although FXS is in one sense a single-gene disorder, it
is more proximally the result of disruption of complex patterns of
expression of many genes, genes that may likewise be abnormally
expressed in autism. Examinations of gross neuroanatomy as well
as neuronal morphology in FXS have revealed specific structural
alterations (for review, see Beckel-Mitchener and Greenough,
2004). Dendritic spines in specific cortical regions are present at
high density and are abnormally long and thin, suggesting an
immature morphology that may produce overconnectivity. Al-
though large-scale, parallel studies with autistic brains are lack-
ing, decreased dendritic branching in the hippocampi of two
postmortem autistic brains (ages 7 and 9) (Raymond et al., 1996)
suggests a reduction in connectivity. Additional work in autism is
necessary to characterize neural structure across anatomical re-
gions and developmental periods and to evaluate the possible
roles of FMRP-associated genes.

Immune signaling in normal brain development and
plasticity: implications for autism
One possible point of convergence between genetic and environ-
mental causal factors in autism is immunological challenge. Au-
tism and the immune system have been linked genetically and
symptomatically (Warren et al., 1996; van Gent et al., 1997;
Krause et al., 2002). Recent studies have shown that normal neu-
rons in developing and adult brains express proteins of the major
histocompatibility complex (MHC) class I, known for their role
in the immune system (Corriveau et al., 1998; Huh et al., 2000).
Furthermore, these immune proteins are required for specific
forms of developmental and functional plasticity, demonstrating
that changes in MHC expression can lead to neurodevelopmental

defects. Interestingly, maternal viral infection at midpregnancy
has been called “the principal nongenetic cause of autism” (Ci-
aranello and Ciaranello, 1995). Cerebellar Purkinje cells, which
are reduced in autism, are a site of striking MHC class I expres-
sion. Decreased expression of MHC class I impairs the pruning of
inappropriate synaptic connections (Huh et al., 2000), an effect
that may explain the early developmental increase in brain vol-
ume in autism and the symptomatic overlap with FXS. A possi-
bility currently being investigated is that specifically timed
changes in neuronal MHC class I expression contribute to the
development and/or expression of autism.

Conclusion
We have presented abnormal neural connectivity as an explana-
tory framework within which genetic and neuropathological
findings on autism may be unified with neuroanatomy, neuro-
physiology, and behavior. Communication between these levels
of analysis promises a greater understanding of mechanisms un-
derlying both normal and pathological development of neural
and cognitive systems and has the potential to render a multiplic-
ity of experimental and theoretical approaches more coherent.
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