461,547 research outputs found

    Vortex boundary-layer interactions

    Get PDF
    The interaction of a turbulent boundary layer (on a flat plate) with a strong artificially-generated longitudinal vortex, which may or may not actually enter the boundary layer, was studied. Experiments, including extensive hot-wire measurements, were completed for the case in which the vortex does enter the boundary layer, and measurements for the somewhat simpler cases in which the boundary layer and vortex remain distinct are now in progress. Contours of total pressure (recently acquired) and of turbulent kinetic energy at various downstream positions are presented to show the overall development of the vortex imbedded in the boundary layer

    Compressible turbulent boundary layer interaction experiments

    Get PDF
    Four phases of research results are reported: (1) experiments on the compressible turbulent boundary layer flow in a streamwise corner; (2) the two dimensional (2D) interaction of incident shock waves with a compressible turbulent boundary layer; (3) three dimensional (3D) shock/boundary layer interactions; and (4) cooperative experiments at Princeton and numerical computations at NASA-Ames

    Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    Get PDF
    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number

    Flow separation in shock wave boundary layer interactions at hypersonic speeds

    Get PDF
    An assessment is presented for the experimental data on separated flow in shock wave turbulent boundary layer interactions at hypersonic and supersonic speeds. The data base consists mainly of two dimensional and axisymmetric interactions in compression corners or cylinder-flares, and externally generated oblique shock interactions with boundary layers over flat plates or cylindrical surfaces. The conditions leading to flow separation and the subsequent changes in the flow empirical correlations for incipient separation are reviewed. The effects of the Mach number, Reynolds number, surface cooling and the methods of detecting separation are discussed. The pertinent experimental data for the separated flow characteristics in separated turbulent boundary layer shock interaction are also presented and discussed

    Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array

    Full text link
    In this paper we investigate the asymptotic validity of boundary layer theory. For a flow induced by a periodic row of point-vortices, we compare Prandtl's solution to Navier-Stokes solutions at different ReRe numbers. We show how Prandtl's solution develops a finite time separation singularity. On the other hand Navier-Stokes solution is characterized by the presence of two kinds of viscous-inviscid interactions between the boundary layer and the outer flow. These interactions can be detected by the analysis of the enstrophy and of the pressure gradient on the wall. Moreover we apply the complex singularity tracking method to Prandtl and Navier-Stokes solutions and analyze the previous interactions from a different perspective

    On Reflection of Shock Waves from Boundary Layers

    Get PDF
    Measurements of the reflection characteristics of shock waves from a flat surface with a laminar and turbulent boundary layer are presented. The investigations were carried out at Mach numbers from about 1.3 to 1.5 and a Reynolds number of 0.9 x 10^4. THe difference in the shock-wave interaction with laminar and turbulent boundary layers, first found in transonic flow is confirmed and ,investigated in detail for supersonic flow. The relative upstream influence of a shock wave impinging on a given boundary layer has been measured for both laminar and turbulent layers. The upstream influence of a shock wave in the laminar layer is found to be of the order of 50 bounday-layer thicknesses as compared with about 5 in the turbulent case. Separation almost always occurs in the laminar boundary layer. The separation is restricted to a region of finite extent upstream of the the shock wave. In the turbulent case no separation was found. A model of the flow near the point of impingement of the shock wave on the boundary layer is given for both cases. The difference between impulse-type and step-type shock waves is discussed and their interactions with the boundary layer are compared. Some general considerations on the experimental production of shock waves from wedges and cones are presented, as well as a discussion of boundary layer in supersonic flow. A few exampies of reflection of shock waves from supersonic shear layers are also presented

    Calculation of turbulent shear stress in supersonic boundary layer flows

    Get PDF
    Turbulent shear stress distributions for supersonic boundary layer flows have been computed from experimental mean boundary layer data. The computations have been made by numerically integrating the time averaged continuity and streamwise momentum equations. Distributions have been obtained for flows upstream and downstream of shock-wave-boundary layer interactions and for both two-dimensional and axisymmetric flows. The computed results are compared with recently reported shear stress measurements which were obtained by hot wire anemometer and laser velocimeter techniques

    Vortex/boundary-layer interactions: Data report, volume 1

    Get PDF
    This report summarizes the work done under NASA Grant NAGw-581, Vortex/Boundary Layer Interactions. The experimental methods are discussed in detail and numerical results are presented, but are not fully interpreted. This report should be useful to anyone who wishes to make further use of the data (available on floppy disc or magnetic tape) for the development of turbulence models or the validation of predictive methods. Journal papers are in course of preparation
    corecore