23,674 research outputs found
Performance of bolted steel-beam to CFST-column joints using stiffened angles in column-removal scenario
This paper presents three experimental investigations on the performance of steel-beam to CFST-column joints using stiffened angle, long bolts and fin plate under a middle column removal scenario. Three specimens were designed and tested. The failure modes and catenary action are investigated in detail. The test results show that increasing the angle plate thickness at the joint could not only improve its performance significantly, but also trigger an early formation of catenary action. Increasing the length of short-limb had influence on the deformation ability of the proposed joint, rather than the load capacity. The buckling of stiffeners could prevent the brittle failure of the joints. With the contribution of catenary action, the joint shows much higher rotation capacities than that required in DoD design guidance. The initial stiffness of the joint was calculated using an analytical model with consideration of bolt pretension. Good agreement to the test results is achieved. A numerical analysis is also carried out, whose results show that adding additional row of bolts would improve the redundancy of the joint under column loss. An equivalent dynamic response evaluation of the joints was also performed. The results show that dynamic amplification coefficient should be worked out considering catenary action under large deformation
The OLYMPUS Internal Hydrogen Target
An internal hydrogen target system was developed for the OLYMPUS experiment
at DESY, in Hamburg, Germany. The target consisted of a long, thin-walled,
tubular cell within an aluminum scattering chamber. Hydrogen entered at the
center of the cell and exited through the ends, where it was removed from the
beamline by a multistage pumping system. A cryogenic coldhead cooled the target
cell to counteract heating from the beam and increase the density of hydrogen
in the target. A fixed collimator protected the cell from synchrotron radiation
and the beam halo. A series of wakefield suppressors reduced heating from beam
wakefields. The target system was installed within the DORIS storage ring and
was successfully operated during the course of the OLYMPUS experiment in 2012.
Information on the design, fabrication, and performance of the target system is
reported.Comment: 9 pages, 13 figure
Effects of bolt-hole contact on bearing-bypass damage-onset strength
A combined experimental and analytical study was conducted to investigate the effects of bolt-hole contact on the bearing bypass strength of a graphite-epoxy laminate. Tests were conducted on specimens consisting of 16-ply quasi-isotropic T300/5208 laminates with a centrally located hole. Bearing loads were applied through a clearance-fit steel bolt. Damage onset strength and damage mode were determined for each test case. A finite element procedure was used to calculate the bolt-hole stresses and bolt contact for each test case. A finite element procedure was used to calculate the bolt-hole stresses and bolt contact for each measured damage-onset strength. For the tension bearing-bypass cases tested, the bolt contact half-angle was approximately 60 degrees at damage onset. For compression, the contact angle was 20 degrees as the bypass load increased. A corresponding decrease in the bearing damage onset strength was attributed to the decrease in contact angle which made the bearing loads more severe. Hole boundary stresses were also computed by superimposing stresses for separate bearing and bypass loading. Stresses at the specimen net section were accurately approximated by the superposition procedure. However, the peak bearing stresses had large errors because the bolt contact angles were not represented correctly. For compression, peak bearing stress errors of nearly 50 percent were calculated
The stamina of non-gasketed, flanged pipe connections
Stress variations showing flange yielding, flange rotation, effects of joint tightening sequence, identification of the mode of response to loading (static or dynamic) is discussed. In addition the effects of re-tightening, importance of high quality bolting with proper surface treatment and use of proper tooling are also discussed
Characterisation of contact pressure distribution in bolted joints
The quantification of contact area and pressure distribution in a bolted joint is essential information, as it determines the integrity of the coupling. Current bolted joint design standards are based on analytical solutions of the pressure distribution, which, because of the inherent assumptions, frequently do not accurately represent the real conditions in a joint. This study uses a nonintrusive ultrasonic technique to quantify the contact pressure distribution in a bolted connection. The advantage of this experimental technique is that the effect of actual contact conditions can be determined. An ultrasonic wave is focused onto the clamped interface, and the reflected sound signal recorded. In areas where the contact pressure is high, most of the ultrasound is transmitted, and the reflected sound signal is weak. Whereas, when the contact pressure is low, the vast majority of the ultrasound is reflected back. A parallel experimental calibration is then used to find the relationship between the reflected sound signal and contact pressure. In this way, the pressure distribution in a clamped interface is determined for a series of different bolt torques. Two different interfaces were investigated: the first consisted of two ground surfaces clamped together, and the second a turned profile pressed against a ground surface. The effect of a washer underneath the bolt head was also considered. The turned profile was found to cause the contact to spread; there was also a certain degree of fragmentation leading to higher peak pressures than in the ground interface case. With a washer positioned under the bolt head for the turned case, the clamping performance of the bolt was improved. Good agreement was found when comparing the ultrasonic measurements with previous studies, with respect to the spread of the contact pressure distribution. However, in this study, the peak contact pressure was found to occur away from the edge of the bolt hole, and to be influenced by the edge of the bolt head
A Structural Safety Analysis of Buildings During Construction
The safety of steel buildings, constructed by the tier method,
is evaluated. The probability of failure of steel frames supported
on temporary connections is examined during the different stages of
completion. The principal loading of concern is the maximum wind
load over the critical stages of construction.National Science Foundation Grants ENG 77-02007, ENV 77-09090, and PFR 80-0258
INFLUENCE OF THE STIFFNESS AND FRICTIONAL CHARACTERISTICS ON THE SHANK TORQUE OF SCREWS IN BOLTED JOINTS
This work aims at determining the influence of tribological and stiffness characteristics of a bolted joint on the residual shank torque of the screw. Even if it is commonly accepted to consider such a residual torque equal to half the torque at the thread, the literature lacks experimental data about the topic. The residual shank torque combines with the axial preload and the external loads to bring about the overall stress on the screw. Hence, the higher the residual torque, the lower the admissible external load for given size and class of the screw. From there stems the need for an analytical tool allowing the designer to calculate the residual torque as a function of the key parameters of the joint
Biomimetic spatial and temporal (4D) design and fabrication
We imagine the built environment of the future as a ‘bio-hybrid machine for living in’ that will sense and react to activities within the space in order to provide experiences and services that will elevate quality of life while coexisting seamlessly with humans and the natural environment. The study of Hierarchical design in biological materials has the potential to alter the way designers/ engineers/ crafts-men of the future engage with materials in order to realise such visions. We are ex-ploring this design approach using digital manufacturing technologies such as jac-quard weaving and 3D printing
- …
