146,160 research outputs found
On the Temporal Effects of Mobile Blockers in Urban Millimeter-Wave Cellular Scenarios
Millimeter-wave (mmWave) propagation is known to be severely affected by the
blockage of the line-of-sight (LoS) path. In contrast to microwave systems, at
shorter mmWave wavelengths such blockage can be caused by human bodies, where
their mobility within environment makes wireless channel alternate between the
blocked and non-blocked LoS states. Following the recent 3GPP requirements on
modeling the dynamic blockage as well as the temporal consistency of the
channel at mmWave frequencies, in this paper a new model for predicting the
state of a user in the presence of mobile blockers for representative 3GPP
scenarios is developed: urban micro cell (UMi) street canyon and
park/stadium/square. It is demonstrated that the blockage effects produce an
alternating renewal process with exponentially distributed non-blocked
intervals, and blocked durations that follow the general distribution. The
following metrics are derived (i) the mean and the fraction of time spent in
blocked/non-blocked state, (ii) the residual blocked/non-blocked time, and
(iii) the time-dependent conditional probability of having blockage/no blockage
at time t1 given that there was blockage/no blockage at time t0. The latter is
a function of the arrival rate (intensity), width, and height of moving
blockers, distance to the mmWave access point (AP), as well as the heights of
the AP and the user device. The proposed model can be used for system-level
characterization of mmWave cellular communication systems. For example, the
optimal height and the maximum coverage radius of the mmWave APs are derived,
while satisfying the required mean data rate constraint. The system-level
simulations corroborate that the use of the proposed method considerably
reduces the modeling complexity.Comment: Accepted, IEEE Transactions on Vehicular Technolog
Experimental evaluation of blockage ratio and plenum evacuation system flow effects on pressure distribution for bodies of revolution in 0.1 scale model test section of NASA Lewis Research Center's proposed altitude wind tunnel
An experimental investigation was conducted in the slotted test section of the 0.1-scale model of the proposed Altitude Wind Tunnel to evaluate wall interference effects at tunnel Mach numbers from 0.70 to 0.95 on bodies of revolution with blockage rates of 0.43, 3, 6, and 12 percent. The amount of flow that had to be removed from the plenum chamber (which surrounded the slotted test section) by the plenum evacuation system (PES) to eliminate wall interference effects was determined. The effectiveness of tunnel reentry flaps in removing flow from the plenum chamber was examined. The 0.43-percent blockage model was the only one free of wall interference effects with no PES flow. Surface pressures on the forward part of the other models were greater than interference-free results and were not influenced by PES flow. Interference-free results were achieved on the aft part of the 3- and 6-percent blockage models with the proper amount of PES flow. The required PES flow was substantially reduced by opening the reentry flaps
An investigation of combustion instability in aircraft-engine reheat systems
The principal objective of this study was to examine experimentally
the effects of upstream temperature, velocity, gutter blockage, tailpipe
length, and main and pilot fuel flows, on the form of combustion instability
encountered in aircraft reheat systems which is sometimes referred to as 'buzz'.
Tests were carried out at atmospheric pressure for upstream temperatures of
between 200 and 500°C, and upstream velocities ranging from 140 to 200 ft/sec.
Three values of stabilizer blockage were employed, namely 25, 30 and 35%.
The tailpipe length was varied between 9 and 45 inches. Auto-correlation
techniques were used in the frequency analysis of the buzz waveforms.
It was found that a certain minimum tailpipe length is necessary in
order to produce buzz which is then strengthened as the tailpipe length is
increased. Buzz also becomes more pronounced with an increase in gas velocity
but stabilizer blockage appears to have no discernible effect … [cont.]
Effect of flameholder pressure drop on emissions and performance of premixed-prevaporized combustors
Parametric tests were conducted to determine the effects of flameholder pressure drop on the emissions and performance of lean premixed-prevaporized combustors. A conical flameholder mounted in a diverging duct was tested with two values of flameholder blockage. Emissions of nitrogen oxides, carbon monoxide, carbon dioxide, and unburned hydrocarbons were measured for combustor entrance conditions of 600 to 800 K air temperature, 0.3 MPa to 0.5 MPa pressure, and 20 m/sec to 35 m/sec reference velocity. Jet A fuel was injected at flow rates corresponding to an equivalence ratio range from 0.8 down to the lean stability limit. Emission results for the high-blockage flameholder were a substantial improvement over the low-blockage emission results. A correlation of combustion efficiency with flameholder pressure drop was developed for pressure drops less than 9 percent
Effect of blockage ratio on drag and pressure distributions for bodies of revolution at transonic speeds
Experimental data were obtained in two wind tunnels for 13 models over a Mach number range from 0.70 to 1.02. Effects of increasing test-section blockage ratio in the transonic region near a Mach number of 1.0 included change in the shape of the drag curves, premature drag creep, delayed drag divergence, and a positive increment of pressures on the model afterbodies. Effects of wall interference were apparent in the data even for a change in blockage ratio from a very low 0.000343 to an even lower 0.000170. Therefore, models having values of blockage ratio of 0.0003 - an order of magnitude below the previously considered safe value of 0.0050 - had significant errors in the drag-coefficient values obtained at speeds near a Mach number of 1.0. Furthermore, the flow relief afforded by slots or perforations in test-section walls - designed according to previously accepted criteria for interference-free subsonic flow - does not appear to be sufficient to avoid significant interference of the walls with the model flow field for Mach numbers very close to 1.0
Advanced prediction technique for the low speed aerodynamics of V/STOL aircraft. Volume 2: User's manual
A computerized prediction method known as the Vought V/STOL Aircraft Propulsive Effects computer program (VAPE) for propulsive induced forces and moments in transition and Short TakeOff and Landing (STOL) flight is improved and evaluated. The VAPE program is capable of evaluating: (1) effects of relative wind about an aircraft, (2) effects of propulsive lift jet entrainment, vorticity and flow blockage, (3) effects of engine inlet flow on the aircraft flow field, (4) engine inlet forces and moments including inlet separation, (5) ground effects in the STOL region of flight, and (6) viscous effects on lifting surfaces
- …
