NASA CONTRACTOR REPORT 166442 - Val. 2

ADVANCED PREDICTION TECHNIQUE FOR THE LOW SPEED AERODYNAMICS OF V/STOL AIRCRAFT, VOL. II

> (MASA-CR-166442-Vol-2) ADVANCED PREDICTION TECHNIQUE ICH THE LOW SPEED AERODYNAMICS OF V/STOL AIRCRAFT. VOLUME 2: USER'S MANUAL Final meport, Mar. 1982 - Mar. 1983 (Vought Corp., Dallas, Tex.) 127 p HC A07/MP A01 G3/02 13929

N84-26663

Unclas

D. Beatty and M. K. Worthey

CONTRACT NAS2-11156 March 1983

NASA CONTRACTOR REPORT 166442

ADVANCED PREDICTION TECHNIQUE FOR THE LOW SPEED AERODYNAMICS OF V/STOL AIRCRAFT, VOL. II

T. D. Beatty

Vought Corporation P. O. Box 225907 Dallas, TX 75265

Prepared for Ames Research Center under Contract NAS2-11156

Moffett Field, California 94035

FOREWORD

A study was conducted for the MASA AMES Research Center by the Yought Corporation to develop improved methodologies for predicting the propulsive induced aerodynamics of V/STOL aircraft in Transition/STOL flight. The study was performed under NASA fontract NAS 2-11156 with Mr. Richard Christiansen of NASA AMES as contract monitor. The Yought efforts in this program were accomplished under the direction of Mr. T. D. Beatty who was the Principal Investigator for this contract. He was assisted on the contract by Mr. M. K. Worthey. Both personnel are from the Flight Technologies directorate of the Yought Corporation.

The authors are particularly indebted to Mrs. D. L. Lewis and Mr. J. W. McCharen for their support in the programming of the computer code.

This report consists of two volumes. The technical discussion of the methodology, verification of the techniques and conclusions and recommendations are presented in Volume I. Volume II is a detailed user's manual for the computer code developed.

TABLE OF WHITENTS

SECTION			PAGE				
1	INTRO	DUCTION AND SUINMARY	1-1				
2	INPUT	INPUT INSTRUCTIONS					
	2.1	DATA STURAGE	2-2				
	2.2	EXECUTIVE SYSTEM CONTROL CARDS Primary Control Card	2-7				
	2.3	STOCKMAN INLET ANALYSIS PROGRAM	2-9				
		GEOHETRY HODULE					
		Title Card Control Card for Geometry Module Geometry Distribution Control Card Control Card for Rakes Rake Definition Card Body Control Card Surface curve Identification Card No. 1 Surface Curve Identification Card No. 2 Splitter Body Definition Card No. 1 Splitter Body Definition Card No. 2 Splitter Surface Curve Identification Cards AXISYNETRIC POTENTIAL FLOW PROGRAM	2-9 2-9 2-10 2-11 2-11 2-12 2-12 2-15 2-16 2-16 2-17				
		Potential Flow Control Card Title Card Flag Card Chord Card Body Transformation Card Body Control Card Geometry Data Cards x - coordinate cards y - coordinate cards	2-18 2-18 2-18 2-22 2-22 2-23 2-23 2-24 2-24				
		Tangential Velocity Data Cards Non-uniform Flow Cards Normal Velocity Cards Tangential Velocity Cards	2-24 2-25 2-25 2-26				
		COMBINATION PROGRAM					
		Title Card Combination Routine Control Card Onbody Input Card Offbody Input Card Noise Supposion Splitter Input Cards	2-27 2-27 2-27 2-28				

SECTION		PAGE
	Flow Control Card No. 1	2-29
	Flow Control Card No. 2	2-30
	Geometry Control Card	2-30
	Theta Input Cards	2-31
	X-Test Cards	2-31
	Geometry Definitions Card	2-31
	Date Card No. 1	2-31
	Date Card No. 2	2-32
	Force and Moment Input Data	2-32
	Inlet Geometry Card No. 1	2-32 2-32
	Inlet Geometry Card No. 2 Inlet Geometry Card No. 3	2-32 2-33
	Inlet Geometry Card No. 4	2-33
	Flow Field Data Card No. 1	2-33
	Flow Field Data Card No. 2 and No. 3	2-33
	Flow Field Data Card No. 4	2-34
	Flow Field Data Card No. 5	2-34
	Flow Field Data Card No. 6	2-35
	TRANSG PROGRAM	
	Transg Control Card	2-36
	VISCOUS PROGRAM	
	Switch Array Control Card	2-37
	Control Card - WSTO No. 1	2-38
	Control Card - WSTO No. 2	2-39
	Control Card - WSTO No. 3	2-39
	Control Card - WSTO No. 4	2-40
	Title Card	2-40
	Control Card No. 1 for input profiles	2-40
	Control Card No. 2 for input profiles	2-40
	N - profile input cards	2-40 2-41
	Control Card for F'(N) input F'(N) input cards	2-41
	Control Card for g'(N) input	2-41
	g'(N) input cards	2-41
	Program option card	2-42
	Case initialization card	2-44
	Station Data Cards	2-45
	Special Instructions Card	2-47
2.4	THREE-DIMENSIONAL JET PRUGRAM	
	HESS POTENTIAL FLOW PROGRAM	
	Title card	2-48
	Case control card	2-48
	Control card for section input	2-49
	Reference data card	2-50
	Mach number card	2-50 2-50
	Angle of attack control card angle of attack cards	2-50 2-50

		Control card for non-lifting panels Control card for lifting panel Control card for Ignored panels Control card for Inlet Geometry Geometry coordinate Input cards No. 1 Geometry coordinate Input cards No. 2 Uff Body Geometry Input	2-51 2-51 2-51 2-52 2-52 2-53 2-53 2-54 2-54
		VOUGHT/WESTON JET METHOU	
		Weston control card Weston Jet Identification card Jet 1	2-56 2-56 2-56 2-57
		VOUGHT/WOOLER JET METHOD	
		Wooler Control card No. 2 Wooler jet data control Wooler jet No. 1 Definition Wooler jet No. 1 Mixing values Wooler Jet No. 2 Definitions Wooler Jet No. 2 Mixing Values	2-58 2-58 2-59 2-59 2-60 2-60 2-60 2-60
		THAMES RECTANGULAR JET METHOD	
		Rectangular jet definition card Rectangular jet nozzle card	2-61 2-61 2-62 2-62
		VISCOUS SOLUTION MODULE	
		Viscous Input Control Card Viscous Control Variables (1) Viscous Control Variables (2) Viscous Control Variables (3) Viscous Transition Location Card	2-63 2-63 2-63 2-64 2-64 2-65 2-65
3.0	VAPE	INPUT FLOW CHARTS	3-1
	3.1	MAIN VAPE PROGRAM	3-1
	3.2	STOCKMAN INLET ANALYSIS SUB-PROGRAM INPUT	3-1
	3.3	HESS THREE DIMENSIONAL POTENTIAL FLOW PROGRAM	3-2

4.0	SAMPL	SAMPLE CASE INPUT									
	4.1	SAMPLE CASE FUR INPUT TO INLET ANALYSIS ROUTINE	4-1								
	4.2	SAMPLE CASE FOR INPUT TO HESS THREE DIMENSIONAL PROGRAM	4-6								
5.0	REFERENCES										
6.0	VAPE	SUBROUTINES	6-1								
	6.1	SUBROUTINE DESCRIPTION	6-1								
	6.2	SUBROUTINE FLOW CHARTS	6-12								
APPEND IX	A -	DESCRIPTION OF GEOMETRY PROGRAM FOR DEVELOPING HESS THREE-DIMENSIONAL INPUT.	A-1								
APPENDIX	R _	INTERACTIVE GRAPHICS INPUT PROGRAM (HESTER)	R_1								

1.0 INTRODUCTION AND SUMMARY

The capability of predicting the propulsive induced forces and moments on a Y/STOL aircraft in the transition or STOL region of flight is very important to the aircraft designer. These effects will strongly influence the location of the jet nozzles and possibly the required thrust of the engines. The Vought V/STOL aircraft propulsive effects (VAPE) program described in this report is a computerized method for calculating these propulsive induced effects.

Volume I of this report describes the technical approach and Volume II is a description of the data input to the computer code, and the code itself.

The VAPE program is a single integrated modular computer program for the prediction of propulsive induced effects. This rather large computer program (over 190 subroutines) consists of four basic components: (1) nacelle inlet analysis module, (2) three dimensional lifting potential flow module with viscous effects, (3) three jet modules, and (4) a nacelle force and moment module. The transmission of data from one component to another is automatic with little or no handwork involved. However, the ability to save results for a multi-step analysis is also provided.

In normal usage the body geometry is input to the HESS three dimensional potential flow program and the nacelle geometry is input to the inlet analysis method. The velocities on the inlet face as predicted by the inlet analysis code are then transferred to the HESS program as boundary conditions on the inlet face. The HESS program then accesses one of the jet methods to obtain the influence velocities due to the jets. The HESS program is then run to completion to obtain the flow field about the vehicle.

The basic framework of the VAPE program is given in Figure 1-1. The program consists of a small executive program that controls the activities of the other program components. Each of the major components of the VAPE program is actually a complete program in itself. They have been combined with the use of the executive main program to give one new and rather large program. The discussions throughout this manual will frequently use the term "program" in a rather loose sense when referring to any one of the major components.

Each of the major program components except the inlet force and moment module can be used as though they are stand-alone programs with all data input at the time of execution. The programs are also capable of saving data in forms required by the various other programs. By use of appropriate data-unit definition cards, any of these data sets can be saved between machine runs. This increases the flexibility of the system and permits the user, for example, to examine the printed output from one program before continuing execution.

The amount of output produced by each program component depends upon the options selected by the user. The print control flags in each component should be selected carefully to avoid massive amounts of unwanted output.

The amount of machine time (both CPU and IO times) will also vary with the options selected. Also, each computer installation has its own algorithm for calculating the CPU and IO times. The user will, therefore, have to run several jobs using the different program options to determine the typical solution times for his particular installation. In general, the times for the potential flow and boundary layer programs in the inlet analysis routine will be relatively short, and the HESS 3-D program much longer.

In summary, a computerized prediction method for propulsive induced forces and moments in transition and short takeoff and landing (STOL) flight is presented. The method developed was based on the Vought V/STOL aircraft propulsive effects computer program (VAPE).

The YAPE program is capable of evaluating:

- o Effects of relative wind about an aircraft
- Effects of propulsive lift jet entrainment and flow blockage
- o Effects of engine inlet suction on the aircraft flow field
- o Viscous effects on lifting surfaces
- Determination of engine inlet forces and moments including inlet separation prediction capability

The effects of relative wind about an aircraft with or without jets and/or inlet effects is determined by a very general three-dimensional panel method.

The effects of the propulsive lift jets are determined by one of three different jet models which have been extensively modified and/or developed at Vought. Some of the major modifications made to the jet models at Vought include:

- o Intermediate ground effects calculations
- o Calculations of the flow field in the STOL region of flight

The effects of engine inlet suction on the aircraft is determined by a NASA Lewis code for axisymmetric inlets which has been modified and automated at Vought. This method will determine the pressures on the inlet face and nacelle inlet lips. The VAPE program will then utilize these pressures to determine the ram drag and forces acting on the inlet. Calculations may also be done to determine when and where separation occurs on the inlet lip.

The various options of the VAPE program have been verified by comparisons between calculated and experimental values.

A computer program code was delivered to NASA and made operational on the NASA CDC 7600 computer. A technical manual for this program is contained in Volume I of this report.

2.0 INPUT INSTRUCTIONS

The VAPE program requires one primary control card followed by the required sets of data cards for each program option to be executed. The sets of data furnished must be in the order as specified by the option number on the primary control card.

The general scheme used in describing the input data is shown below:

		Routine	
Colume	Code	<u>Format</u>	<u>Explanation</u>
Col umn	-	Column indicates the seach data field.	tarting position on the card for
Code	-	The "code" gives the f statement by the progr	ORTRAN name used in the read
Routine	-	"Routine" indicates th	e subroutine where the data in read.
Format	-	routine name, indicate read statement field. that the parameter is columns wide. Integer side of the field (rigwould indicate a float decimal point i.e., -1 anywhere in the field decimal point location parameter £12.6 would punched with a decimal	which is given right under the sthe FORTRAN format of the data. The parameter 15 would indicate an integer in a field that is 5 should be punched on the right justified). The parameter F10.0 ing point number punched with a 12.354). The number may be punched indicated irrespective of the indicated by the format. The indicate a floating point number point i.e., 5.0 x 10 ⁶). On are treated identically.
			that no format is used. Data is e or more blanks, a comma, or a s are not permitted.
Explanat	io n -	The description of the "explanation".	e input data is given under

2.1 DATA STORAGE

In order for the VAPE program to function efficiently, a large amount of data must be transferred between subprograms. Some of this data is only temporary and is stored on "scratch" files which are not retained when no longer needed. Certain data which is required by various routines is stored on permanent files which can be saved, so that the program can be interrupted and then restarted. Table 2.1-1 lists the file names, and a short description of the file contents. Table 2.1-2 presents a summary of the files used by file number.

Table 2.1-1 Data Storage Files

ORIGINAL PAGE IS OF POOR QUALITY

FILE UNIT	FILE CREATED IN SUBROUTINE	FILE ALIAS	FILE USED IN SUBROUTINE	FILE ALIAS	DESCRIPTION
MTI	EOD BSETUP	IRSIDE	LOCAL* SOLMOR	IFUTAP DE VTAP	SCRATCH FILE RHS COLUMN
MT2	EUD COMBYN BSETUP		LOCAL* LOCAL* INP2		SCRATCH FILE SCRATCH FILE BOUNDARY LAYER STRIP INFORMATION
	SOLMOR HESS	NOUT	LOCAL LOCAL		SCRATCH FILE SCRATCH FILE
МТЗ	EOD COMBYN VCOM	NOUT	LOCAL* LOCAL* AFORM	NOUT	SCRATCH FILE SCRATCH FILE ONSET FLOW MATRIX
ļ			OLCMFLO	NOUT	
MT4	EOD LIFT		LOCAL VFMLFT		SCRATCH FILE GEOMETRY DATA
	NOLIFT COLSOL	NW,NSIG	VFNNLF PKUTTA OLCMFLU HESS	NTT	SIGMA MATRIX
MT5					INPUT
MT6					OUTPUT
MT7	SOLMOR	NSI	LOCAL		SCRATCH FILE
мтв	EOD Combyn VFMLFT	N8	LOCAL* LOCAL* VFMLFT	N8	SCRATCH FILE SCRATCH FILE VELOCITY MATRIX
	VCOM	IONSET	PKUTTA	IONSET	KUTTA MATRIX
MT9	EOD COMBYN AFORM	NAIJ	LOCAL* LOCAL* COLSOL	NIN	SCRATCH FILE SCRATCH FILE AIJ MATRIX
MT10	EOD Combyn Aform	NRSIDE	LOCAL* LOCAL* COLSOL	RHSTAP	SCRATCH FILE scratch file RIGHT HAND SIDE MATRIX
MT11 .	EOD VFMNLF		LOCAL* VCOM		SCRATCH FILE

ORIGINAL PAGE 19 OF POOR QUALITY

Data Storage Files (Continued)

FILE UNIT	FILE CHEATED IN SUBROUTINE	FILE ALIAS	FILE USED IN SUBROUTINE	FILE ALIAS	DESCRIPTION
			AFORM GLCMFLO	Th Tn	SOURCE VELOCITY MATRIX
MT12	EOU VCOM JET3 JET3IN	НТ19 МТ19 МТ19	LOCAL* JETOLD		SCRATCH FILE JET DATA
MT13	EOD VFMLFT	ND	LOCAL* VCOM	ND	SCRATCH FILE DIPOLES VELUCITY
MT14	COLSOL HINIT	NOUT	INPUT VCOM INLENT JETOLD RECJET JETSIN		SCRATCH FILE REGENERATED INPUT
	COLSOL SOLMOR	NS1 NS1	LOCAL LOCAL		SCRATCH FILE SCRATCH FILE
MT15	COLSOL	NLTAPE	SOLMOR	NLTAPE	L-MATRIX
MT16	COLSUL	NTTAPE	SOLMOR	NTTAPE	T-MATRIX
MT17	EOD		COMBYN		GEOMETRY DATA
	VFMNLT VFMLFT		PKUTTA	CIAG	KUTTA RIGHT SIDE
MT18	SULMOR	NW	HESS	NBLSUL	ADDITIONAL SIGMA FROM SOLMAR
MT19					SAME AS MT12
MT20	SCIRCL GEOMOD INPUT		EOD EOD		INPUT INPUT OUTPUT OPTION
MT21	VCOM				OUTPUT OPTION
	JETOLD JET3IN				OFITON

ORIGINAL PAGE IS

Data Storage Files (Continued)

FILE	FILE CREATED IN SUBROUTINE	FILE ALIAS	FILE USED IN SUBROUTINE	FILE ALIAS	DESCRIPTION
HT22	CUMBYN COMFLO		LUCAL*		SCRATCH FILE SCRATCH FILE
HT23	Cumbyn		LOCAL*		SCRATCH FILE
MT25	ССМВҮН		TRANSG		TRANSFUR 1ED COURDINATE DATA FROM COME
MT26	TRANSG		VISCUS		TRANSLATED, SCALED COORDINATE DATA FROM TRAN
MT27	VISCUS		GEOMOD		DT DATA FROM Viscus
MT28	SCIRCL		GEOMOD		X, Y, ALPHA DATA FROM SCIRCL
MT29	GEOMOD		EOD		BUILT FOR EOD PASS 2
HT34	COMBYN		INLINT		
MT37					MASS STORAGE
мТ39	HINIT		BSETUP		BOUNDARY LAYER INPUT
MT40					MASS STORAGE
					NOTE: *-May be located in more than one routine but member of major group.

TABLE 2.1-2 SUMMARY OF DATA STORAGE FILES

•

ORIGINAL PAGE 18

ORIGINAL PAGE IS

2.2 EXECUTIVE SYSTEM CONTROL CARDS

This routine controls the order in which the routines within VAPE are executed and initializes some parameters for use in the Stockman Program.

E-1 PRIMARY CONTROL CARD (12, 13, 15, 110, F1C.O, 110, F1O.2, 515, F5.0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANA I ION
1	MTCK	INITMT (I2)	Tape assignment flag = 0 Normal output = 1 Output assignment of scratch files
3	IPROG	INI TMT (I3)	Selects stage at which computation begins, default value is 1.
6	I PRG2	INI TMT IS	Execution begins with: = 1 Geometry module (Stockman) = 2 Potential flow routine (Stockman) = 3 Combination routine (Stockman) = 4 Translator routine (Stockman) = 5 Viscous routine (Stockman) = 6 GEOMCD routine (Stockman) = 7 HESS routine (3-D HESS) Selects stage at which computation stops default value is 7 Execution stops at:
			= 1 Geometry routine (Stockman) = 2 Potential flow routine (Stockman) = 3 Combination routine (Stockman) = 4 Translator routine (Stockman) = 5 VISCOUS routine (Stockman) = 6 GEOMOD routine (Stockman) = 7 HESS routine (3D HESS)
11	MXPTS	IMI TMT IIO	Maximum number of points that may be generated by the geometry routine, default value is MXPTS - 180. Large numbers of points* require/excessive computation time, thus this limit can be used to stop execution if it is not desired to use large amounts of computation time.

^{*} Problems where SCIRCL generates 250 points or less have little impact on computer run time. Problems where SCIRCL generates 300 or more points will effect computer run time and should be avoided if possible.

ORIGINAL PAGE IS

21	т імх	INI TMT F10.0		Maximum amount of computation time that may be used by the potential flow solution routine, default value is TIMX = 200 (seconds). Errors in the geometry input can cause excessive amounts of time to be used in the potential flow solution routine. Program execution is terminated if this limit is exceeded to avoid wasting computation time.
31	IPASS	INITMT I10		If IPASS = 1 % IPRG2 = 1 program execution stops after potential flow solution (Stockman).
				If IPASS = 1 a IPRG2 =/ 2 or 3 program skips translator, VISCOUS a GEOMOD routines and proceeds directly to 3-D HESS program.
41	XRI2	INITMT		Surface distance increment added to stagnation point or inlet highlite to start boundary layer solution. (Recommend 0.05)
		F10.2		
51	RT(1)	INI TMT I5		Number of on-body points for closed end solution.
56	NT(2)	INI THT 15		Number of on-body points for open end solution.
61	NP	INI TMT I5		Total number of cff-body points
66	NHUBMX	INI TMT 15		Number of last points on hub
71	IPLGT	INI TMT 15	= 0 = 1	No plots Plots (not checked out)
76	XRPLOT	INITMT F5.0		Last X where data is Plotted (Recommend XRPLOT = XRI)

- (1) Note that NT(1), NT(2), NP, and NHUBMX should be imput only if IPROG>1. These values are output of SCIRCL.
- (2) The parameters from MXPTS through XRPLOT are control values for the nacelle inlet analysis module and are not required if IPROG = 7.

ORIGINAL PAGE IS OF POOR QUALITY

2.3 STOCKMAN INLET ANALYSIS PROGRAM*

GECHETRY HODULE

IA-1 TITLE CARD (8A 10)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	Title	SC IRUL 8A1U	Title card If Title (1) = Stop, Control transfers to main routine, input to SCIRCL is complete.

IA-2 CONTROL CARD FOR GEOMETRY MODULE (ZA10,415)

COLUMN	CODE	RGUT INE FURMAT		EXPLANATION
1	IDENT	SCIRCL A10		Case identifier
11	PROG	SCIRCL A10		Potential flow flag
				EOO Axisymmetric program Used for identification only.
21	N06	SCIRCL 15		Flag for potential flow solution
			= 0	All solutions
			= 1	Basic geometry data only

^{*} Cards for this module required only if IPROG = 1 on card E-1.

IA-3 GEOMETRY DISTRIBUTION CONTROL CARD (8F10.2)

COL UMPI	CODE	ROUTINE FORMAT		<u>EXPLAMATION</u>
1	ANBDYS	SCIRCL F10.2	= 1 = 2 = 3	Number of input bodies Shroud (cowl) only Hub and shroud Hub, flow splitter plates and shroud
11	DELS	SCIRCL F10.2		Spacing between points in region of interest, DELS affects total number of points, solution accuracy, and computer run time.
21	DELSMX	SC IRCL F10.2		Maximum spacing used far from region of interest. DELSMX must be less than inlet duct flow width
31	XRI	SCIRCL F10.2		Axial location of point of interest. Point at which surface distance equals zero. Spacing between points is kept at approximately DELS up to XRI, then spacing increases to DELSMX far from region of interest. XRI should be located in constant area section downstream of the assumed fan face of the inlet.
41	ANNSD	SCIRCL F10.2		Number of noise suppression devices or NSD splitter (can be zero)

ORIGINAL PAGE 19 OF POOR QUALITY

IA-4 CONTROL CARD FOR PAKES (2015)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	NRAKES	SC IRCL 15	Number of axial locations at which data across the passage is desired. At least one is required @ XRI. $1 \le NRAKES \le 25$

IA-5 RAKE DEFINITION CARD (110, 3F10.5)

CCLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	NY	SC IRCL I10	Number of points in rake at XRAK. Total number of points for all rakes limited at 200, NY ≤ 200, Y = (YHI-YLO)/NY
11	XRAK	SCIRCL F10.5	Axial location of rake $XRAK_{i+1} \ge XRAK_{i}$
21	YLO/	SCIRCL F10.5	Y value of first point on the rake (must be an off body point)
31	YHI	SCIRCL F10.5	Y value of last point on the rake (must be an off body point)

Note: One rake definition card for each rake: thus NRAKES number of cards input here

ORIGINAL PAGE IS

IA-6 <u>B</u>	ODY CONTROL	CARD (8F10.0)	UNE CARD FOR EACH BUDY
COLUMN	CUDE	ROUTINE FORMAT	EXPLANATION
1	TYPBDY	SCIRCL F10.0	Body identification flag See table below
11	ANSEG	SCIRCL F10.0	Number of segments for the particular body, see TYPBDY. If TYPBDY = 0, it is the Y centerline used for mirroring.

TABLE I Use of Parameter TYPBDY

Value of	VALUE of TPYBDY				
ANBDYS	0	1	2	3	
1			shroud		
2	centerline	hub	shroud		
3	centerline	hub	*flow splitter	shroud	

Analytical Functions

The inlet surfaces can be described by combining parts of six available analytical functions, as shown in Figure 2-1. The coefficients for each analytical function used are determined by the program from the coordinate points input. The number of coordinate sets needed varies with each analytical function as listed in Table II, and shown in Figure 2-1.

IA-7 SURFACE CURVE IDENTIFICATION CARD al (10X, 7F10.2)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
11	ENREED	SCIRCL F10.2	code indicating type of curve to be fitted through the given points, it is also the exponent for a superellipse when the exponent is to be specified. (See Table II Below)
			ENREED = 0.0, SCIRCL program will calculate an exponent. Read in 5 coordinates (XIN and YIN). (fig. 2-1(a))
			1.0 < ENREED < 10.0, superellipse with exponent equal to ENREED. Input coordinates 1,2,4,5. Read in 0.0 for point no. 3. (Point no. 3 is not used, but points 4 and 5 must be in the proper columns.) (fig. 2-1(b))

ORIGINAL PAGE 19 OF POOR QUALITY

1001. < ENREED < 1010. The flag 1000. added to the code of desired superellipse is used on the shroud to give finer spacing at the highlight. The superellipse going into the highlight and the one of the topside of the highlight should have this flag.

EMREED = 1.0, is a straight line, input 2 coordinates (XIN (1), YIN(1), XIN(2), YIN(2)). (fig. 2-1(c)).

ENREED = 10.0, special straight line used for closed bodies (example - airfoils). This straight line starts with large spacing (DELSHX) and ends with the small spacing (DELS). Input 2 coordinates. (fig. 2-1(d)).

ENREED = -1.0, fits a lemniscate between a straight line and a point. Input is 3 coordinates. (fig. 2-1(e))

ENREED = -2.0, fits an ellipse between two straight lines. Input 4 coordinates. Restriction, the two straight lines should be at a right angle, therefore superellipse routine can be used. (fig. 2-1(f))

ENREED = -3.0, fits a cubic between 2 straight lines, input 4 coordinates. (fig. 2-1(g))

21	XIN(1)	SCIRCL F10.2	X value of first input point
31	YIN(1)	SCIRCL F10.2	Y value of first input point
41	XIN(2)	SC IRCL F10.2	X value of 2nd input point
51	YIN(2)	SC IRCL F10.2	Y value of 2nd input point
61	XIK(3)	SC IRCL F10.2	X value of 3rd input point
71	YIN(3)	SC IRCL F10.2	Y value of 3rd input point

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2-1. Analytical functions available for describing inlet surfaces

ORIGINAL PAGE 18 OF POOR QUALITY

IA-8 SURFACE CURVE IDENTIFICATION CARE # 2 (8F10.2)

COLUMN	CODE	ROUTINE FORMAT	EXPL ANATION
1	XIh (4)	SCIRCL	X value of 4th input point
		F10.2	
11	YIN(4)	SC IRCL F10.2	Y value of 4th input point
21	XIN(5)	SC IRCL F10.2	X value of 5th input point
31	YIN(5)	SC IRCL F10.2	Y value of 5th input point

TABLE II
Analytical Functions Available

Curve	Code Enreed	Number of Points Needed	Portion Used (Figure 2-1)
Cubic	3.0	4	2 to 3
Ellipse	2.0	5	2 to 4, point 3 is a dummy pt
Lemni scate	1.0	3	2 to 3
Super Ellipse	0.0	5	2 to 4
Straight Line	1.0	2	1 to 2
Super Ellipse	1.0 to 10.0 1001. to 1010.	4 4	2 to 4, pt. 3 optional 2 to 4, extra fine grid
Straight Line	10.0	2	straight line for closed body

There should be ANSEG number of the above two cards input at this point.
Additionally, there should be the last three cards repeated for each body (ANBDYS) at this point.

IA-9 SPLITTER BODY DEFINITION CARD #1 (8F10.2) (input only if ANNSD >0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	DELS	SUPRD F10.2	Spacing between points on the NSD splitter, can be different than DELS on the body

IA-10 SPLITTER BODY DEFINITION CARD #2 (1615) (input only if ANNSD >0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	NSE G	SUPRD 15	Number of segments on the NSD splitter. For a thin NSD splitter, segments on the topside should begin and end at the same X values as corresponding segments or the underside.
6	NSHIGH	SUPRD 15	Number of the segment on the underside of the NSD going into the highlight, equal to 1/2 of NSEG for thin splitter. Set NSHIGH = NSEG for all other splitters.

ORIGINAL PAGE IS OF POOR QUALITY

IA-11 SPLITTER SURFACE CURVE IDENTIFICATION CARDS (10X, 7F10.2) (Input only if ANNSD >0)

The information on the geometry identification and and the surface curve identification cand must be input for the splitter using same definitions and cand form as given above for these two cards so input ENREED, XIN(1), YIN(1) through XIN(5), YIN(5) at this point for splitter

REMARKS, Total number of points for all the bodies should not exceed 400.

The first straight line on the shroud must be equal in axial length to the last straight seyment on the hub. If the first straight line on the shroud is longer, use two segments.

Total number of off-body points must not exceed 200. If there are acoustic splitters in the area of a rake, specify ANNSD + 1 rakes for axial location of rake.

ORIGINAL PAGE 19 OF POOR QUALITY

AXISYMETRIC POTENTIAL FLOW PROGRAM

The Axisymmetric Potential Flow Program is the second part of the Stockman inlet analysis procedure. The output from SCIRCL (The Geometry Module) is used in this sub-program. The results of this sub-program are used by the combination routine to determine the flow field.

If data is being transferred from SCIRCL and NIN \neq 0 or NIN \neq 5 then only the following card is input for the potential flow program. Input data only if IPROG = 2 on card E-1.

AP-1 PCTENTIAL FLOW CONTROL CARD (215)

COLUMN	CODE	ROUTINE FORMAT		EXPLANATION
1	NIN	EOD 15		input tape for EOD, normally generated by SCIRCL
			= 5	data input on cards (card must follow)
			= 20	data being transfered from SCIRCL
6	IEODW	EOD 15	≠ 0	extra printout for debugging of program (normally set 20)

If NIN = 5, then the following cards must be input. If NIN = 20, then skip to combination program card description.

AP-2 TITLE CARD (5A10, A7, 5X, I10)

COLUMN	CODE	ROUTINE FORMAT	EXPL ANATION
1	HEDR	PART1 5A10	title of case.
51	CASE	PART 1 A7	case identi 😽
63	SEQ1	PART 1 I10	sequence number of this card in the input scheme

AP-3 FLAG CARD (2811, 12, 32X, 110)

Card columns 1-30 when punched with any non-zero integer, activate flags that indicate the following:

CCLUTIN	CODE	ROUTINE FORMAT		EXPLANATION
1	NB	PART1 Il		The number of bodies imput. Normally set equal to 1. $1 \le kB \le 5$
2	NNU	PART1 Il		The number of non-uniform onset flows. Hormally set equal to 0.
3	FLG03	PART1		Axisymmetric flow flag.
		11	-c	No axisymmetric stream-flow solution calculated.
			-1	Axisymmetric streamflow solution is calculated
				Normally set equal to 1
4	FLG04	PART1		Cross flow flag.
		11	=0	No cross flow solution is calculated
			=1 ⁻	Cross flow solution is calculated
				Normally set equal to 0
5	FLG05	PART1		Off-body point flag
		11	=0	No off body points input
			=1	Off body points are input
				This flag allows the velocity at points off the body surface to be determined.
6	FLG06	PART1 I1		Basic data formation flag
		11	=0	A full case will be done
			=1	The basic data, i.e., midpoints, normals, etc. will be formed and printed. No velocities will be calculated.
7	FLG07	PART1 Il	=0	Ellipse generator option Body coordinates will be imput
			=1	An ellipse is generated using data input later. No body coordinates are input
8	FLG08	PART1		Matrix print flag
		I1	=0	Coefficient matrices are not printed.
			=1	Coefficient matrices will be printed.
				Normally set equal to 0
				2.10

9	FLG09	PART1		Matrix solution flag #1
		II	=0	Matrix solution set later
			-1	Old SIEDEL method used
10	FLG10	PART1		Matrix solution flag #2
		I1	=0	Matrix solution set elsewhere
			=1	Modified SIEDEL method used
11	FLG11	PART1		Perturbation velocity flag
		I1	=0	Normal case
			=1	No onset flow used. Only perturbation velocities are calculated.
12	FLG12	PART1		Potential matrix solution
		II	=0	Normal case
			=1	A potential matrix is solved
13	FLG13	PART1 I1		Matrix solution flag #3
			<u>-</u> 1	Matrix solution set elsewhere
			=l	Matrix solution by triangularization
				Normally set equal to 1.
14	FLG14	PART1		Prescribed tangential velocity flag
	I1	11	=0	Normal case
			=1	Tangential velocities are specified
15	FLG15	PART1		Strip ring vorticity flag
		11	=0	Normal case
			=1	A vorticity distribution is formulated.
16	FLG16	PART1		Axisymmetric uniform flow flag
		11	= 0	Normal case
			=1	Axisymmetric uniform flow solution is omitted
				Normally set equal to 0.

17	FLG17	PART1		Crossflow uniform flow flag
		11	=0	tiormal case
			=1	Crossflow uniform flow solution is omitted.
				Since FLGC4 is normally = 0 then so is FLG17 normally set equal to 0.
18	FLG18	PART1		Surface vorticity flag
		11	=0	Normal case
			=1	Surface vorticity is generated.
19	FLG19	PART1		Prescribed vorticity Flag
		11	=0	Normal case
			=1	A prescribed vorticity is input
20	FLG20	PART1		Total vorticity flag
		11	=0	Normal case
			=1	Total vorticity calculated
21	FLG21	PART1 I1		Extra crossflow flag
		11	=0	Normal case
			=1	Extra crossflow option used
22	FLG22	PART1		Generated boundary condition flag
		11	=0	Normal case
			=1	Boundary conditions generated
23	FLG23	PART1		Ring wing option flag
		11	=0	Normal case
			=1	Ring wing option used
24	FLG24	PART1 II		Not used by this program
25	FLG25	PART1 I1		Not used by this program
26	FLG26	PART1 Il		Not used by this program

27	FLC27	PART1 II		Not used by this program
28	IPUVEL	PARTI II		Punch flag
		**	C=	Mo data punched
			=1	Punched output generated
29	NDUM	PART1 I1		Not used by this program
63	SEQ2	PART1 I1		Sequence number of this case in the imput stream

AP-4 CHORD CARD (3F10.0, 32X, I1C)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	CHORD	PART1 F10.0	Reference chord length used to non- dimensionalize x and y coordinates
11	FM	PART1 F10.0	Mach number (MN $<$ 1.0) use to approximate effect of compressibility (Gothert' rule)
21	TCNST	PART1 F10.0	This is a constant which is used for the value of the tangentia! velocity if this option is desired.
62	SEQ2	PART1 F10.0	Sequence number of card in input stream

AP-5 BODY TRANSFORMATION CARD (5X, 15, 5F10.0, 16X, 14)

<u>CCL UMN</u>	CODE	ROUTINE FORMAT	EXPLANATION
5	NN	BASIC1 15	The number of input points on this body. NN \leq 500
11	MX	BASIC1 F10.0	A factor used to multiply all x-coordinates. MX is assumed equal to 1 if no valve is input.
21	MY	BASIC1 F10.0	A factor used to multiply all y-coordinates. MY is assumed equal to 1 if no value is input.
31	THETA	BASIC1 F10.C	An angle (in degrees) through which all points of a body are to be rotated about the origin in the clockwise direction.

41	ADDX	BASIC1 F10.G	A constant to be added to all x-coordinates
51	ADDY	EASIC1 F10.0	A constant to be added to all y-coordinates
76	SEQ2	BASIC1 14	Sequence number of this card in input stream

AP-6 BCDY CONTROL CARD (3(5X, I5), 2F10.0, 26X, I4)

COLUMN	CODE	ROUTINE FORMAT		EXPL ANATION
6	BDN	BASIC1 I5		Body sequence number. This program will handle up to 5 bodies.
16	SUBKS	EASIC1 15		Subcase Flag.
		15	=0	Normal case
			=1	Use unmodified coordinat∈s of the previous case.
26	NLF	BASIC1 15		Non-lifting flag
			=0	Body is lifting (this is used in special option)
			=1	Body is non-lifting (normal case)
31	XE	BASIC1 F10.C		Value of major semi-axis for use by ellipse generation option.
41	YE	BASIC1 F10.0		Value of minor semi-axis for use by ellipse generation option
				Note: if XE = YE a sphere will be formed.
76	SEQ2	BASIC1 F10.0		Sequence number of this card in the input stream

GEOMETRY DATA CARDS (6F10.0, 16X, I4)

The body geometry data cards are included only if the input parameters NIN = 0 or 5 and SUBKS = 0 on the body control card. If NIN = 20 then the data is read from unit 20. If NIN = 5 and BDN = 0 then the following cards contain the x-y coordinates of off-body points instead of x-y geometry data. The number of either geometry data point or off-body points must be equal to NN.

AP-7 X-CCORDINATE CARDS (six values per card)

COLUMN	CCDE	ROUTINE FCRMAT	EXPL ANATION
1	TX1(1)	BASIC1 6F10.0	x-coordinates of body input from leading to trailing edge
11	TX1(2)	BASIC1 6F10.0	
21	TX1(3)	BASIC1 6F10.C	
etc.			
76	SEQ2	BASIC1 14	Sequence number of this card in the input stream

AP-8 Y-COORDINATE CARDS (six values per card) (6F10.0, 16X, I4)

COLUM	CODE	ROUTINE FORMAT	EXPLANATION
1	TY1(1)	BASIC1 6F10.C	y-Coordinates of body which correspond to the x-values above. y values must be positive.
11	TY1(2)		
21	TY1(3)		
etc	•		
76	SEQ2	BASIC1 14	Sequence number of these cards in input stream

NOTE: Each body input, including the off body points, requires the body transformation card, the body control card, and may also require the geometry data cards depending on the input flags. This is the stopping place for a normal axisymmetric case. The following cards are input only if one of the special options is required.

AP-9 TANGENTIAL VELOCITY DATA CARDS (six values per card) (6F10.0, 16X, I4)

These cards are input only if FLG14 \neq 0 and TCNST = 0.0

COLUMN	CODE	ROUT INE FORMAT	EXPLANATION
1	TG(1)	BASIC1 6F10.0	Specified tangential velocities at element midpoints.
11	TG(2)		

21 TG(3)

etc.

AP-10 MCN-UNIFCRM FLCW CARDS

This card is input only of NNU \neq 0.

		RCUTINE	
COLUMN	CODE	FORMAT	EXPLANATION
6	NUM	BASIC2 15	Non-uniform flow identification number.
16	MSF	BASIC2 I5	If MSF = 1 the flow velocities N_0 , T_0 will be be used for the axisymmetric case only.
			If MSF = 1 the flow velocities N_0 , T_0 will be used for the cross flow case only.
			If MSF > 1 the flow velocities will be used for both axisymmetric and cross flow cases.
21	TYPE	BASIC2 F10.0	Flag which specifies the type of input flow velocities at each mid-point. If TYPE > 0.0, the velocities are input as x & y components.
			If TYPE = 0.0 the velocities are input as normal & tangential components.
			If TYPE < 0.0 the automatic generation of the flow due to a rotating body is used.
31	FG	BASIC2 F10.0	Constant used by the flow generator. Type must be less than 0.0.
76	SEQ2	BASIC2 14	Sequence number of this card in the input stream

The following cards are input only if NNU \neq 0 and TYPE \neq -1.0.

AP-11 NORMAL VELOCITY CARDS (six values per card)

COLUMN	CODE	ROUTINE FORMAT	EXPL ANATION
1	NG(1)	BASIC2 F10.6	This is either the x or normal velocity component depending on the value of type above. These values must be in sequence with the coordinate data. If the x component is

input it is defined as positive to the right. If the normal velocity is input it is positive if it is to the interior of the body. NN-1 values are input.

76 SEQ2 BASIC1 Sequence number of this card

14 cards in input stream

AP-12 TANGENTIAL VELOCITY CARDS (six values per card)

COLUMN	CODE	RCUTINE FORMAT	EXPLANATION:
1	TG(1)	BASIC2 6F1C.0	This is either the y or tangential velocity component depending on the value of type above. These values must correspond to the NG values above. If the y component is input it is defined as positive if it is orientated upwards. If the tangential velocity is input it is positive if the flow field is to the left of the vector representing the tangential velocity.
76	SEQ2	BASIC2 14	Sequence number of this card in the input stream

INPUT FOR COMBINATION PROGRAM

C-I TITLE CARD (8A1C)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	TITLE	READS 8A10	Title of this case If title(1) input as end control returns to main program - input for combination program complete

C-2 COMBINATION ROUTINE CONTROL CARD (2015)

COLUMN	CGDE	ROUTINE FORMAT		EXPLANATION
1	NID	READS 15		Number of ID cards from EOD output. NID = 1 except when closed end and open end cases run separately. Then NID = 2.
6	KSKIP	READS 15	= 0 = 1	For 1 case of COMPYN For successive cases using the same EGD output.
11	N4SOL	RE ADS 15		N4SOL = 0 when there are three solutions from EOD (one axisymmetric solution for each closed and open end cases and one crossflow solution for closed end). N4SOL = 1 when there are four solutions from EOD (solution for crossflow with open end is added).
16	NSPLT	READS 15		Number of noise suppression devices (splitters): can equal zero.
21	KEYCOM	READS 15	= 1 = 2 = 3	Onbody data punch FLAG for data transfer Shroud Data Hub Data Shroud & Hub Data
26	KEYRK	RE ADS 15		The number of X's at which Vx, Vy, Vz is to be obtained.

C-3 ONBODY INPUT CARD (4F10.5)

COLUMN	CODE	ROUTINE FORMAT		EXPLANATION
1	XRAG1	READS F10.5	See Tape C-1.	
11	XRAG2	RE ADS F10.5	See Tape C-1.	

TABLE C-1 Use of Parameter XRAG

CEYCOM	XRAG PARAHETERS	NOTES
1	XRAG1 = Start value for shroud data	A If XRAG1 > 0 and and XRAG2 > 0 — Hormal mode and checks for X valves on the shroud from inside to outside B XRAG1 < 0 ABS (XRAG1) > XRAG2 — Mode by which only X values on inside surface of the shroud are obtained C XRAG1 < 1 ABS (XRAG1) < XRAG2 — Mode by which only X values on external surface of the shroud are obtained

C-4 OFFBODY INPUT CARD (8F 10.5) (input only if KEYRK >0)

1	XOFFM(1)	READS F10.5	Offbody X at which Vx, Vy, Vz co be obtained.
11	XOFFM(2)	READS F10.5	Input KEYRK values 8 values per card.
21			

71

C-5 NOISE SUPPRESSION SPLITTER INPUT (2015) (input only if NSPLT >0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	NSPB(1)	READS 15	Number of right most point on Splitter.
6	NSPE(1)	READS 15	Number of left most point on Splitter.

11	NSPB(2)	READS 15
16	NSPE(2)	READS

Input NSPLT values of NSPB and NSPE >8 values to a card.

NOTE: The first Splitter is the one closest to the hub and the last Splitter is the one closest to the shroug.

C-6 FLOW CONTROL CARD#1 (8F10.2)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	VC	READS F10.2	Average axial velocity at the control station. Based on live flow area, i.e., the flow area minus the area associated with the boundary layer displacement thickness. If VC = 0.0 the program will interpret this as a code and will calculate VC from WDOT. (To run a case with VC actually equal to zero set WDOT = 0.0) (FT/SEC)
11	VINF	READS F10.2	Free Stream Velocity (FT/SEC)
21	ALFAF	READS F10.2	Angle of attack, 0.0 for free stream perpendicular to inlet axis $(\alpha_F = X-90^\circ)$ degrees
31	TTOTAL	READS F10.2	Total temperature, if PSTAT and TSTAT are read in (to be explained later), the program will calculate TTOTAL. If TTOTAL = 0 and PSTAT and TSTAT = 0, then TTOTAL = 518.67 degrees K.
41	ELND	READS F10.2	Arbitary length used for normalizing (see KND card C-8 for further description) FT.
51	YWING	READS F10.2	Not used in this program version YWING is the upper limit integration for surface forces.
61	UTIP	READS F10.2	Rotor tip speed (not required unless relative rotor inlet quantities are desired).

ORIGINAL PAGE IS OF POOR QUALITY

71 VA READS

F10.2 Sulk velocity at control station, i.e., average inlet axial velocity based on geometric area. If VA = 0.0, the program will interpret this as a code and set VA = VC.

C-7 FLOW CONTROL CARD #2 (8F10.2)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	PT	READS F10.2	Total pressure, if PT = 0 program sets PT = $2116 \text{ lbs/rt}^2 (\text{los/FT}^2)$
11	PSTAT	READS F10.2	Static pressure, if input as zero, program will calculate (lbs/FT ²).
21	TSTAT	READS F10.2	Static temperature, if input as zero, program will calculate (lbs/FT ²).
31	WDOT	READS F10.2	Weight flow (input only if VC is input = 0.0).
41	DELQ	READS F10.2	Increment for value of stream function.

C-8 GEOMETRY CONTROL CARD (2015)

COLUMN	CODE	ROUTINE FORMAT	Ē	EXPLANATION
1	NTHETA	READS 15		Number of THETAS, where THETA is the circumferential coordinate.
6	NCLO	READS 15		One rake must be chosen as the control station. NCLO is the number of the first point on the rake.
11	NCHI	READS 15		The number of the last point on the control station rake.
16	NX	READS 15		No XTEST values read. XTEST values must be input.
21	KND	READS 15	KND = 0, KND = 1,	Flag used for non-dimensionalizing, ELND = YRISHR ELND = 1.0 (no nondimensionalizing) ELND = YRISHR - YRIHUB ELND is the read in value For the above the velocities are normalized by VC.
			KND = 4,	same as KND = -1 but VA is used for normalizing velocities.

KND = 5 same as KND = U, velocities normalized by

KND = 6 same as kND = 1, velocities normalized by

C-9 THETA INPUT CARDS (8F10.2)

COLUM	CODE	ROUTINE FORMAT	EXPLANATION .
1	THETA(1)	READS F10.2	Circumferential coordinate in degrees. Note that the last theta read will be the data set used to Lalculate the boundary layer solution in VISCUS.

VA.

11 THETA(2)

Input NTHETA values 8 values per card

C-10 X TEST CARDS (8F10.2) (NX 70)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION		
1	XTEST(1)	READS F10.2	Axial location of control surface, usually set equal to XRI		
11	XTEST(2)				

Input NX values 8 values per card

C-11 CFOMETRY DEFINITION CARD (8F10.2)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	XRì	READS F10.2	Value of X (axial coordinate) where surface distance is zero, usually equal to X at the control station.
11	YRIHUB	READS F10.2	Y value on HUB at $X = X \kappa I$
21	YRISHR	READS F10.2	Y value on SHROUD at $X = XRI$

C-12 DATE CARD NO. 1 (4X, 3I2, I5) (Read only if KSKIP = C)

COLUMN	CODE	FORMAT	EXPLANATION	
5	MO	READS I2	Month of EOD run which produced potential flow solution.	

7	JA	READS 12	Day of EùD run which produced potential flow solution.
9	IR	READS I2	Year of EOD run which produced petential flow solution.
11	NRUNND	READS I5	Run number corresponding to date of computer program run date given above.

C-13 DATE CARD NO. 2 (4X, 312, 15) (Read only if KSKIP = 0 AND MID > 1)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
5	M02	READS I2	See MO above
7	JA2	READS 12	See JA above
9	IR2	READS 12	See IR above
11	NRUNNO2	READS 12	See NRUNNO above

^{*} This card is input only if the open and closed potential flow solutions were run separately.

The following cards are input for force and moment option.

C-14 INLET GEOMETRY CARD NO. 1 (9A10)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	TITLE	READS (8A10)	Problem identification card

C-15 INLET GEOMETRY CARD NO. 2 (12, 8X, 12)

CULUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	NINT	READS I2	Total number of internal surface geometry points input
11	NOUT	READS 12	Total number of external surface geometry points input

C-16 INLET GEOMETRY CARD NO (3F10.0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	X1(1)	RL 4DS F10.0	Internal surface geometry from SCIRCL output (in combined routine)
11	YI(I)	READS F10.0	Data proceeds from XAAG, to hilite location
21	OYDXI(I)	READS F10.0	

There will be NIMT cards input (I = 1, NIMT)

C-17 INLET GEOMETRY CARD NO. 4 (3F100)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	XO(I)	READS F10.0	External surface geometry from SCInCL output (in combined routine)
11	YO(I)	READS F10.0	Data proceeds from hilite location to XRAG2
31	(1)0X6YG	READS F10.0	

There will be NOUT cards input (I = 1, NOUT)

NOTE:

X = Axial Coordinate
Y = Radial Coordinate
OYDX = Surface Slope

C-18 FLOW FIELD DATA CARD NO. 1 (8A10)

COLUMN	CODE	ROUTINE FORMAT	<u>EXPLANATION</u>
1	TITLE	READS 8A10	Problem Identification
C-19, 20	FLOW FI	EL DATA CARD N	O. 2 AND NO. 3 (NAMELIST)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
2-72	SIN	READS (NAMELIST)	NAMELIST identified
	PAMB TAMB		Ambient Pressure, 1bs/in ² Ambient Temperature, ^O R

	VFLIGHT NACANS		Free Stream Velocity, FT/sEC Nacelle Tilt Angle, degrees
5-72	ACALPHA	READS (JAMELIST)	Aircraft Angle of Attack, degrees
	SIDSL IP		Sideslip Angle, degrees
	S*		Distance outboard to moment reference point, inches
	L*		Distance from high lite along inlet centerline to moment reference point, inches
	3		Terminator

*EXAMPLE: Reference point defined at the inlet

high lite is S = 0.0, L = 0.0

NOTE: \$IN must start in column 2. Flow conditions variables follow with

a comma separating one from another. If the data list is too large for one card, a second card can be used provided the data is listed after column 2. Do not end a card with a comma. The namelist is ended with a \$.

C-21 FLOW CONDITION DATA CARD NO. 4

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	INANG	READS F10.0	Angle between relative wind and inlet centerline
21	NPSIN	READS 12	Number of circumferential positions (on body)

C-22 FLOW CONDITION DATA CARD NO. 5

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	NRAD	READS 12	Number of circumferential positions (off-body)
11	NCIRC	READS 12	Number of data cards. This will equal the number of points per rake defined in SCIKCL
21	XFLOW	READS P10.0	Off-body axial station (race station)

C-23 FLOW CONDITION DATA CARD NG. 6

COLUMN	COCE	ROUTINE FORMAT	EXPLANATION
1	RADIUS(I)	READS (8F10.0)	Off body radial position. These will be defined in the COmBYN output from the combined routine. There will be HCIKC number of RADIUS(I) data.

SPECIAL INSTRUCTIONS

The geometry data must cover the inlet boundaries defined in the combined input. These boundaries must be broad enough to include the predicted stagnation point at each circumferential angle. If the boundaries are not broad enough, an error message will be printed.

When defining the induced angle to calculate the forces and moments, the aircraft centerline and the Nacelle centerline must be parallel. Therefore, in general, NACANG should equal 0.0 and ACALPHA should equal the incidence angle. Then IHANG \pm ACALPAA.

INPUT FOR TRANSG PROGRAM

This program takes data from the COMBYN program and translates, scales, and sets up the data for input to sub-program viscus.

T-1 TRANSG CONTROL CARD (F10.6)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	XBLTZ	TRANSG F10.0	X station in the inlet where the boundary layer solution ends. Usually it is equal to XRI.

IMPLT FOR VISCOUS ROUTINE

Since the program uses not use any constants which depend on the system of units (except the Free-stream total temperature), any consistent set of units may be used.

V-1 SWITCH ARRAY CONTROL CARD (1515)

				
COLUMN	CODE	ROUTINE FORMAT		EXPLANATION
1	ISTO(1)	COTR 15	< 0 ≤ C ≠ 0 = 999	Data input on unit 31 Data input on unit 5 Input data listed Program returns at this point
6	ISTO(2)	COTR 15	= -1	Do not list profiles except at the X-location denoted by ISTO(7) or at the last X-location calculated if separation occurs.
			= 0	Profiles are listed at each point to the profile end if $U/V \le I$: if $U/V > I$ at end and WSTO(1) $\le I$ each succeeding point is listed unless ISTO(4) $\ne U$ then overshoot portion is suppressed entirely.
			= 1	File lists only the profile end values at the wall and boundary layer edge.
			= 2	Profiles are listed on each point to the first point greater than WSTO(1/.
			= 3	Profiles are listed on each point at the JDIV interval to the profile end.
			<u>></u> 3	or LT $<$ -1 only the value of the profile at the wall is listed.
11	ISTO(3)	COTR 15		Used to compute the profile point list interval. List interval = ISTU(3) *JDIV
16	ISTO(4)	COTR 15	≠ 0	List for overshoot portion of profile (U/Y) > i is suppressed.
21	ISTO(5)	COTR 15	= 1	POP = 0 Lists momentum & energy equation boundary values for each iteration.
			= 0	Do not list transition statistics or viscosity functions at the wall.
26	ISTO(6)	COTR I5	= 1	Energy and momentum balances COFi , COF2 etc. together with their ratio are listed for all computed X-stations.

31	ISTO(7)	COTR IS	>	X-location number that a profile list is required.
36	ISTO(8)	COTR 15	<u>></u> 1	Used to include a linear section of X-station data from X = 0 to some X-location specified by slope test. The end point of the linear section after the interpolation or new X points equals ISTO(8, * X-station number of the last station input before the interpolation. The total number of X-station points will be increased by ISTO(8; *1. This option should be used only when the slope or the input data increases somewhere between X = O and the first maximum.
41	ISTO (9)	COTR I5		Determines the end-point of the linear section. If the X-station data input > than ISTO(9) +2 begin the slope test.
46	ISTO(10)	COTR 15		Not used by program
51	ISTO(11)	COTR 15	= 1 = 2	One set of station data read in on tape. More than one set of station data read in on tape
56	ISTO(12)	COTR 15		Non-dimensionalizes X-station data after computations if ISTO(12) = 0 and μ STO(10) = 0 X-station data are non-dimentionalized by the last X-value.
61	ISTO(13)	COTR 15	= 1	List full profile near zero shear
65	ISTO(14)	COTR 15	= 1	Turbulent restart occurs at point of laminar separation.
71	ISTO(15)	COTR 15	= 0	Station data input on tape
			≠ 0	Station data input on cards.

V-2 CONTROL CARD WSTO(NO. 1) (5E15.8)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	WSTO(1)	COTR E15.8	Limit for U/V usually = .9999
16	WST0(2)	COTR E15.8	Used to limit amplitude of profiles U/V for calculation.

ORIGINAL PAGE IS OF POOR QUALITY

31	WSTO(3)	COTR E15.8	Used to recalculate RuT(_, if IOP = 4 WSTO(3, = 1/ (_)
46	4ST0(4)	COTR E15.8	Used only if $[KX * AW(1)]^2 \ge 1$
61	WSTO(5)	COTR E15.8	Used as scale factor for X(I) before computations.

V-3 CONTROL CARD HSTO(NO. 2) (5E15.8)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	WSTO(6)	COTR E15.8	See WSTO(4)
16	WSTO(7)	COTR E15.8	See WSTO(4)
31	WSTO(8)	COTR E15.8	Scale factor for U(I)
46	WSTO(9)	COTR E15.8	Scale factor for GP(I)
61	WSTO(10)	COTR E15.8	If WSTO(10) = 0 and ISTO(12) = $\dot{0}$ set WSTO(10) = X(IX) (IX reters to last computed x station.
			If WSTO(10, ≠ 0 X is non-gimensioned after computation and X(I) is scaled X(I) = X(I)/WSTO(10).

V-4 CONTROL CARD WSTO(NO. 3)(5E15.8)

COLUMN	CODE	ROUTINE FORMAT		EXPLANATION
1	WSTO (11)	COTR E15.8		Used to compute RDT(1) if $IOP = 7$ & $DuP > 0$ RDT(1) = $U(1)DT(1)$ where $\#STO(11) = \nu$ $\#STO(11)$ {if $\#STO(11) = 0$ program sets $\#STO(11) = .1564 \times 10^{-3}$ }
16	WSTO(12)	COTR E15.8		Not used
31	WSTO(13)	COTR E15.8		Value of TURB(I) in the transition region for which turbulent restart will be allowed.
46	WSTO(14)	COTR E15.8	= 0 ≠ 0	Set PRT(turbulent prandil no) = 1.0 PRT = WSTO(14)

61 WSTO(15) COTR = 0 Molecular pranatl no. = .78 E15.8 \neq 0 PR = WSTO(15)

V-5 CONTROL CARD WSTO(NO. 4) (5E15.8)

COLUMN	CODE	ROUTINE FORMAT		EXPLANATION
1	WSTO(16)	COTR E15.8		Conversion factor for $U(I) \neq 0$. Then $U(I) = \#STO(16) * U(I)$
16	WSTO(17)	COTR E15.8	≠ 0	Than GBC scaled by WSTO(17)
31	WSTO(18)	COTR E15.8		Sonic velocity corresponding to static temperature at start of boundary layer calculation.
46	WSTO(19)	COTR E15.8		Static temperature at scart of boundary layer calculation.
61	WSTO(20)			Not used by this program.

V-6 TITLE CARD (18A4)

COLUMN	CODE	ROUTINE FORMAT		EXPLANATION
1	LABEL	COTR	Title for this	case

V-7 CONTROL CARD NO. 1 FOR INPUT PROFILES (1515)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	JDIV	COTR 15	Number of supintervals of f'(n) and g'(n) input profiles, JDIV ≤ 300

Y-8 CONTROL CARD NO. 2 FOR INPUT PROFILES (1515)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	JY	COTR 15	Total number of n values of $f'(n)$ and $g'(n)$ input profiles, $JY \le 300$

V-9 PROFILE INPUT CARDS (6F10.5)

COLUMN	CODE	ROUTINE FORMAT		EXPLANATION
1	YY(1)	COTR F10.5	First	profile value.

ORIGINAL PAGE IS OF POOR QUALITY

11 YY(1+July) COTR Second profile value.

F10.5

21 YY(1+2JOIV) COTR Third profile value

F10.5

etc. input until $YY(J^Y)$ is reached. Input 6 values per card.

V-10 CONTROL CARD FOR F'(η) INPUT (1515)

COLUMN	CODE	ROUTINE FURMAT	EXPLANATION
1	JEF	COTR 15	Total number of $f'(n)$ values on the input profile.

V-11 f'(η) INPUT CARDS (6F10.5)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	FP(1)	COTR F10.5	1st $f'(\eta)$ profile value
11 FP	(1+JDIV)	CUTR F10.5	2nd $f'(\eta)$ profile value
21 FP	(1+2JDIV)	CUTR F10.5	3rd $f'(\eta)$ profile value

etc. input until FP(JEF) is reached. Input 6 values per card.

V-12 CONTROL CARD FOR g' (η) INPUT (1515)

COLUMN	CODE	ROUTINE FURMAT	EXPLANATION
1	JEG	COTR F10.5	Total number of $g'(\eta)$ values on input profile.

V-13 g'(η) INPUT CARDS (6F10.5)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	GP(1)	COTR F10.5	1st value of $g'(\eta)$ profile value
11	GP(1+JDIV)	COTR F10.5	2nd value of $g'(\eta)$ profile value

21 GP(1+2JDIV) COTR F10.5

3rd value of g'() profile value

etc. input until GP(GEG) is reached. Input 6 values per card.

V-14 PROGRAM OPTION CARD (1515)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	IOP	COTR I5	Initialization option number: If IOP.EQ.1,2,3 the input profile is the starting profile.
			If IOP.EQ.4,5,6,7, the startiny profile is calculated using the input profile as a rough guess.
			If IOP.EQ.1, the starting flow is laminar and $(dU/dx)_{\delta}2/\nu_{\infty}$ is known.
			If IOP.EQ.2, the starting flow is turbulent and $\delta^*(\mathrm{dp/dx})$ τ_{M} is known.
			If IOP.EQ.3, the starting flow is turbulent and $(dU/dx) \circ U$ is known.
			If IOP.EQ.4, the starting flow is similar laminar. Only on this option do calculations start from the beginning of the boundary layer growth.
			If IOP.EQ.5, the starting flow is laminar and $(dU/dx)\delta^{*2}/\nu_{\infty}$ is known.
			If IOP.EQ.6, the starting flow is turbulent and $\delta^*(\mathrm{dp/dx})/ au_{\mathrm{W}}$ is known.
			If IOP.EQ.7, the starting flow is turbulent and (dU/dx) δ^*/U is known.
6	МОР	COTR I5	Designated options on the $g'(\eta)$ profile. The option number is determined from the desired method of obtaining the $g'(\eta)$ profile whether the flow properties are variable or not (see table III).
11	DOP	COTR 15	Controls the interpretation of either the input velocity or the Mach number input data. The option number is determined from table IV.

ORIGINAL PAGE 19 OF POOR QUALITY

Flow properties		Method of obtaining g'(q) profile
Not variable	Variable	
-1	1	h^0 assumed constant and equal to h_e^0 throughout the layer; $g'(\eta) = 0, 0$.
-2	2	$s_{w}^{*} = GBC = \left[h_{e}^{0} - h_{w}(x)\right] / \left(h_{e}^{0} - h_{r}\right)$ is the wall boundary condition imposed on the energy equation.
-3	3	$g_w^{**} = -(GBC)d_w/T_w = -S_{tr}d_w/T_w$ is the wall boundary condition imposed on the energy equation where $S_{tr} = R_L S_{tr} = Lg_w/\left[\rho_e \nu_w \left(h_e^0 - h_r\right)\right]$ for laminar similarity starting solutions and $S_{tr} = S_{tr} = g_w/\left[\rho_e U \left(h_e^0 - h_r\right)\right]$ for all others.

TABLE III. ALTERNATIVE VALUES OF MOP

Interpretation of	Interpretation of input,	
Mach number input, ³ U _{in} (I) - M(I)	Velocity input, au in - U(I)	$f_{ ext{in}}'(\eta)$ profile
-1	1 .	$a_{\underline{f}_{1}^{\bullet}}(\eta) = (U - u)/U$
		V _{win} = V _w
-2	3	$a_{in}(\eta) - (\rho_e U - \rho u)/(\rho_e U)$
		$V_{w_{in}} = (\rho_w/\rho_e)/V_w$

These intercharges take place at the beginning of the program and thereafter U(I) and $f'(\eta)$ have their conventional meanings, whereas VW(I) represents $(\rho_W/\rho_e)V_W$ throughout the calculation for $DOP = \pm 2$.

TABLE IV. ALTERNATIVE VALUES OF DOP

ORIGINAL PAGE IS OF POOR QUALITY

16	10	COTR 15	Determines type of flow: IO.EQ1 for axisymmetric flow on inside surface formed from radii drawn from body axis.
			IO.EQ.1 for axisymmetric flow on outside surface formed from radii drawn from body axis.
			10.EQ.O or blank for planar flow.
21	ТОР	COTR I5	If TOP.EQ.1, transition is to be calculated by the program.
26	POP	COTR 15	Print option for listing data. If TOP.EO.i. skip detailed list of output.

V-15 CASE INITIALIZATION CARD (8F10.5)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	MR	COTR F10.5	Reference free-stream Mach number generally equal to the potential flow Mach number at start of boundary layer calculation:
			If IOP.EQ.4, MR=M(2), and if IOP.NE.4, MR=M(1).
			If IOP.EQ.7 and M(1).EQ.0.0, ${\rm m} \hat{\kappa}$ is reset to 0.001.
11	DT(1)	COTR F10.5	Displacement thickness at start of boundary layer calculation:
			If IOP.EQ.7 and DT(1).EQ.0.0, DT(1)=0.001 in the program.
21	RDT(1)	COTR F10.5	Reynolds number based on displacement thickness at the start of the boundary layer calculation:
		,	If IOP.EQ.4, RDT(1) becomes $(x_2-x_1)U(x_2)/$ and can be calculated in the program (see WST $\dot{u}(3)$ input).
31	BS	COTR F10.5	Input for initial pressure gradient:
		F10.3	If IOP.EQ.1, BS is $(dv/dx) \delta^{*2}/\nu_{\infty}$.
			If IOP.EQ.2, BS is $\delta * (dp/dx)/\tau_{W}$.
			If IOP.EQ.3, BS is (du/dx) 6*/U.

ORIGINAL	L PAGE 19
OF POOR	R QUALITY
91 .	

6	3. ·		If IOP.EQ.4, BS=1.0 for Falkner-skan stagnation point flow and BS=0.0 for Blasius flat plate flow.
			If IOP.EQ.5, BS is $(db/dx/s^{*2}/\nu_{\infty}$.
			If IOP.Ey.6, BS is o*\dp/dx//Td.
			If IOP.EQ.7, BS is (du/dx)6*/u.
41	TO	COTR F10.5	Free-stream total temperature in degrees Kelvin.
51	ВН	COTR	Enthalpy ratio, $\begin{pmatrix} h^0 - h_r i/n_e^0 \end{pmatrix}$.
61	FT	COTR F10.5	Free-stream turbulence, fraction of time during which the flow at a given position remains turbulent.

V-16 STATION DATA CARD (8F10.5) (Read only if ISTO(15) \neq 0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	X	COTR F10.5	Wall station locations (see Special Instructions for Preparing Input section:
11	U	COTR F10.5	Free-stream velocity corresponding to each x-location. The arrays of X(I), U(I), etc., are specified along the boundary surface for the downstream calculations. The maximum number of x-stations that can be computed is 99. The last station data card should be followed by an x-card with an x less than che previous x to switch out of the card read loop.
21	TURB	COTR F10.5	Indicates fraction of flow that is turbulent.

For laminar flow, TURB(I)=0.0; for turbulent flows, TURB(I)=1.0. By changing TURB(I) from 0.0 to 1.0, either abruptly or gradually over a distance of several x-stations, the effect of transition can be simulated. Also see WSTU(13).

ORIGINAL PAGE 19 OF POOR QUALITY

If the transition option is used (i.e., TOP.=.1), a TURH(1) input is not needed.

If flow is all laminar, TURB(1) input is not needed.

If flow is turbulent, set TURs(I)=1.0 at desired X(I) location.

All other TURB(I) at locations GT.X(I) will be set to 1.0 by the program.

31	GBC	COTR F10.5	Wall boundary condition on the energy equation, either g'(wall) or g"(wall).
41	RW	COTR F10.5	Radius of body surface in the same units as x.
			If IO=0, Rw=0.0.
51	VW	COTR F10.5	Transpiration velocity in the same units as U.
61	SW	COTR F10.5	Mikuradse sandgrain roughness scale in the same units as \mathbf{x} .
71	CW	COTR F10.5	Longitudinal wall radius of curvature in the same units as x (if convex $cw < 0$; if concave $cw > 0$).

Special Instructions for Preparing Input

Specification of profiles. - The input intervals of η are subdivided by the input JDIV. For a laminar calculation the η step need not vary appreciably across the layer, and the product of JY and JDIV equal to 150 is usually adequate to define a profile. However, in a turbulent portion of the x-profiles a smaller step size should be prescribed close to the wall than is specified further out to improve the accuracy in the "law-of-the-wall" region. The η step size although variable from wall to boundary layer edge, remains fixed throughout the boundary layer calculations. The input step sizes should be specified for accurate results in both laminar and turbulent portions of the flow. The outer edge of the boundary layer in the η coordinate will not change appreciably as the calculations proceed downstream since η is normalized with δ^* , Smaller η spacing will be required throughout the layer if a very small κ step is used.

The specifications of the $f'(\eta)$ and $g'(\eta)$ profiles depends on whether these profiles are used as the starting profiles or the input profiles are recalculated. If the input profiles are to be used as specified, they should be compatible with the initial pressure gradient. For turbulent flow the profiles must be well defined in the "law-of-the-wall" region. This region can often be specified by using some empirical "law of the wall". If the input profiles are recalculated, the initial profiles need not be very accurate since the calculated profiles usually converge very rapidly to their final value for almost any reasonable input profile.

Specification of x-step size. - The sequence of the x-values defines the x-spacing at which calculations will be performed. The x-step size depends on the input station Mach number or velocity distribution. The x-step size should be inversely proportional to the magnitude of the slope of the velocity distribution. For large velocity gradients the x-steps must be very small.

The x-step size is most sensitive at the start of the boundary layer growth. However, if the slope of the U(X) as a function of x curve is linear, larger x-step sizes can be taken. The input options ISTO(8) and ISTO(9) can be used to modify input x-station data to include a linear section at the start of the boundary layer growth.

If the program is run separately, or if VAPE is started in VISCOUS by the user, the x-step size and corresponding velocity profile can be specified by the user with the card input. Otherwise, subroutine TRANS will automatically input the step size and velocity gradient as printed out at the end of COMBYN.

2.4 THREE DIMENSIONAL JET PROGRAM**

HESS POTENTIAL FLOW PROGRAM

H-1 TITLE CARD (8A10.0)

COL UTIL	CODE	ROUTINE FORMAT	EXPLANATION
1	TITLE	HIHIT 8A10	Title of input case

H-2 CASE CONTROL CARD (A5,815)

COLUMN	CODE	ROUTINE FCRMAT		EXPLANATION
1	CASE	HINIT AS		Case identifiar
6	INOPT	HINIT		If INOPT >_ 0 set case = reads
		15		Read jet data from previous run subroutine JETOLD
			=-1	wooler jet method used
			=-2	Weston jet method used
			<-2	Thames rectangular jet
11	IEXEC	HINIT I5	=0 =1	Partial execution (used to verify input) Full execution
			=-1	Jet calculations only (not checked out)
16	MPR	HINIT 15	=0	No matrix print*
		19	=1	Matrix printed
21	NGPS	HINIT IS		Number of ground plane sections. Ground plane sections must be first non-lifting sections input
26	JET	HINIT IS		Number of independent jet systems (A jet system contains 1 or more jets)
31	L20	HINIT I5	= 0	Panel data written on NT 20 except for sections with X7RPRN non blank
			>0	Panel data written on output unit
			<0	No panel data written on output file* regardless of XTRPRN flag

^{**} The control parameter normally used are denoted by an asterik (*).

36 L21	HINIT	=0	JET (wooler) print is or NT 21	
	I5	=1	JET (wooler) print for final * iteration only is on output file	
			>1	All JET (wooler) print is on output file
41	L22	Hini t 15	=0	Pressures and panel loads are written on NT 22 except for sections with XTRPRN non-blank
			>0	Pressures and panel loads written on output unit *
46	BL.	HINIT I5	≨0 =1	No viscous solution Viscous solution generated

H-3 CONTROL CARD FOR SECTION INPUT (1615)

COL UPIN	CODE	ROUTINE FCRMAT		EXPLANATION
1	NLSEC	HINIT IS		Number of non-lifting sections
6	L IFSEC	HINIT IS		Number of lifting section ≤ 12
11	LASWAK	HINIT I5	=0	Semi-infinite wake not used See
		13	=1	Semi-infinite wake used* Section 4.0
16	NOFF	HINIT I5		Number of off body points
21	IG	HINIT I5		Ignored panel flag (for panels which are not exposed to the flow field) i.e. wing pane's under pylons, etc.
			=0	Air panels used*
			⊒ i	Some panels ignored (Panels defined will be removed from solution matrix.)
26	MOMENT	HINIT		Moment origin input flag
		15	=0	No moment center input
			=1	Moment center coordinates input
31	NSYMI	HINIT 15		X-Z symmetry flag
		19	=0	No symmetry
			=1	Symmetry in X-Z planes

41	INLETS	HINIT IS	Number of inlets to be imput
46	INLVEL	HINIT IS	Inlet velocity input flag ≤0 Cne inlet velocity per inlet input. This velocity used at all inlet contro! point.

>0 Inlet velocities determined in inlet analysis routine at all inlet control points

NOTE: NLSEC + LIFSEC + INLETS ≤ 24

H-4 REFERENCE DATA CARD (8F10.0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	REFA	HINIT F10.0	Reference area for force coeff. (Normally wing area)
11	SPAN	HIMIT F10.0	Reference span for moment coeff. (Normally wing span)
21	CBAR	HINIT F10.0	Reference length for moment coeff. (Eormally wing mal)

H-5 MACH NUMBER CARD (8F10.0)

CCL UM	CODE	ROUTINE FORMAT	EXPLANATION
1	Æ	HINIT F10 0	Input free stream mach no.

H-6 ANGLE OF ATTACK CONTROL CARD (1615)

COLUMN	CODE	ROUT INE FORMAT	EXPLANATION
1	IATACK	HINIT IS	Number of angle of attack cases to be input ≤ 10

H-7 ANGLE OF ATTACK CARDS (8F10.0)

COLUMN	CODE	ROUT INE FORMAT	EXPLANATION
1	ALPHA(1)	HINIT F10.0	Angle of attack No. 1 (Input in degrees)
11	PSI (1)	HINIT F10.C	Angle of yaw No. 1 (nose left is positive)

21	ALPHA(2)	HINIT F10.C	Angle of attack No. 2
31	PSI (1) etc	HINIT F10.0	Angle of yaw No. 2

Input IATACK valves of ALPHA and PSI

H-8 NOMENT REFERENCE CARD (8F10.0) (IMPUT OHLY IF MOMENT = 0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	ORIGNX	HINIT F10.C	X coordinate of moment center
11	ORI GNY	HINIT F10.0	Y coordinate of moment center
21	CRIGNZ	HINIT F10.0	Z coordinate of moment center

H-9 CONTROL CARD FOR NON-LIFTING PANELS (1615)

COL UMAN	CODE	ROUTINE FORMAT	EXPLANATION
1	NLSTR(1)	HINIT 17	Number of strips in non-lifting section No. 1
6	NLSOR(1)	HINIT IS	Number of panels per strip in nonlifting section Ko. 1
11	NLSTR(2)		
16	NLSCR(2)		
	etc		

Input NLSEC values of NLSTR and NLSCR (NLSOR ≤ 99)

H-10 CONTROL CARD FOR LIFTING PANELS (1615)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	IXFLAG(1)	HINIT 15	Extra strip flag for lifting section No. 1 - This defines a strip of elements which are completely enclosed within another body. No boundary conditions or sources are solved for on the elements of this strip.

=	Ľ	no ex	tra	strip) input
_					

= 1 first strip is extra

= 2 first and last strips are extra

= 3 last strip is extra

			- 5 1436 3611p 13 CALIF
6	MSTRIP(1)	HINIT IS	Number of strips in lifting section No. 1 (includes extra strips)
11	NSORCE (1)	HINIT IS	Number of source panels per strip in section No. 1 (does not include wake panels)
16	NWAKE (1)	HINIT IS	Number of wake panels per strip in lifting section No. 1.
21	IXFLAG(2)	HIRIT IS	

26 NSTRIP(2) "

31 MSORCE (2)

NWAKE (2) 36

e tc

Input lifsec values of IXFLAG, MSTRIP, MSCRCE and MMAKE

NOTE: MSTRIP (I) \leq 20 and MSORCE (I) + NWAKE (I) \leq 99

H-11 CONTROL CARD FOR IGNORED PANELS (1615) (INPUT ONLY IF IG >0 AND LIFSEC >0)

CCL UMN	CODE	ROUTINE FORFAT	<u>EXPLANATION</u>
1	IG1(I,J)	HINIT 15	First ignored panel on lifting strip I
6	IGN(I,J)	HINIT 15	Last ignored panel on lifting strip I
11	IGI(1,J)	•	
16	IGN(I,J)	•	
	etc		

Repeat for J=1, LIFSEC, I=1, NSTRIP(J)

H-12 CONTROL CARD FOR INLET GEOMETRY (1615)

COLUMN	CODE	FORMAT	EXPLANATION
1	NLSTRK(K)	HINIT 15	Number of strips in inlet section K

6 MLSOR(K) HIMIT
15

Number of panels per strip in inlet section K

Repeat for K = 1, Inlets

H-13 GECHETRY CCORDINATE INPUT CARD NO. 1 (6F10.0, 2A10)

This card reads in first card of each section with appropriate identifiers

<u>COL UMP</u>	COCE	ROUTINE FORMAT	EXPLANATION
1	XB(1)	INPUT* F10.C	X Coordinate of point 1 of given section
11	YB(1)	INPUT F10.0	Y Coordinate of point 1
21	ZB(1)	INPUT F10.0	Z Coordinate of point 1
31	XB(2)	IMPUT F10.0	X Coordinate of point 2
41	YB(2)	INPUT F10.0	Y Coordinate of point 2
51	ZB(2)	INPUT F10.0	Z Coordinate of point 2
61	SEC ID	INPUT A10	Section identifier
71	XTRPRN	INPUT A10	Print flag

H-14 GEOMETRY COGRDINATE INPUT CARDS NO. 2 (6F10.0)

These cards read in the rest of coordinates for each section

COLUM	CODE	ROUT INE FORMAT	EXPLANATION
1	X8(I)	INPUT* F10.0	X Coordinate of point I
11	YB(I)	INPUT F10.0	Y Coordinate of point I
21	ZB(I)	INPUT F10.0	Z Coordinate of point I

MCTES: The geometry coordinate input card no. 1 is input at the first of each section followed by the geometry coordinate input cards no. 2. The number of no. 2 cards input depend on the number of panels and strips in each section.

The geometry coordinate cards are input for each section for nonlifting, lifting, and inlet sections in the following required order:

- o All nonlifting sections
- o All lifting sections
- o All inlet sections

*The above geometry cards are read in subroutine LSTIMP which is called by subrouting HIMIT. The data is read from unit 5 (input on cards, tape) in an 8A10.0 Format and transferred to unit 14 for use in the rest of the program, (subroutine input).

H-15 OFF BODY GEOMETRY INPUT (6F10.0) (Read only if NOFF >C)

COL UM	CODE	ROUTINE FORMAT	EXPLANATION:
1	XC(I)	INPUT* F10.0	X Coordinate of off-body pt
11	YC(I)	INPUT F10.0	Y Coordinate of off-body pts
21	ZC(I)	INPUT F10.0	Z Coordinate of off-body pts
31	XC(I+1)	INPUT F10.0	X, Y, Z Coordinates
41	YC(I+1)		
51	ZC(I-1)		

Repeat until NCFF coordinates are input

H-16 INLET VELOCITY CARDS (6F10.0)

(Input only if inlets >0 and INLVEL ≤ 0)

COLUMN	CODE	ROUTINE FCRMAT	EXPLANATION
1	VINLET	FCOM F10.0	Inlet Velocity Ratio ${\tt VINLET/V}_{\!\infty}$

Repeat this card for each angle of attack and each inlet

^{*}See Note Directly Above

H-17 INLET VELOCITY CARDS (8F10.3) (Input only if INLETS >0 and INLVEL >0)

CCLUMN	COCE	ROUT INE FCRMAT	EXPLANATION
1	YCENT	INL INT F10.3	Y Location of Center of inlet circle
11	ZCENT	INLINT F10.3	Z Location of Center of inlet circle

WESTON JET METHOD

W-1 JET CONTROL CARD (1615) (Read only if Jet >0 and INCPT = -2)

COL UN:N	CODE	ROUT IME FORMAT	EXPLANATION:
1	NJ	WTU9NI 15	Control flag for a of jets NJ = 1 1 jet
_			NJ = 2 2 jets
6		INPUW IS	Control flag for wake calculation = 0 wake calculation used (only good
			for $\alpha = 0$) = 1 wake calculation ignored

W-2 WESTON CONTROL CARD (8F10.3) (Read only if Jet > 0 & INOPT = -2)

COLUMN	CODE	ROUT INE FORMAT		EXPLANATION
1	VINF	INPUTW F10.3		Free stream velocity, V _∞ , FT/SEC
11	XMAX	INPUTW F10.3		Max value of X/D in jet centerline and vortex path. (End of jet should be aft of configuration)
21	DXGT	INPUTW F10.3		Growth parameter used in jet centerline and vortex path.
31	DEXTAX	INPUTW F10.3		Initial stepsize of jet ΔX/D.
41	ZGP	INPUTW F10.3		Ground plane Z coordinate
51	GPI	INPUTW	≠ 0.0	Control flag for STO calculation Wall jet calculated
		F10.3	= 0.0	No wall jet calculations

W=3 WESTON JET IDENTIFICATION CARD (Jet 1) (8F10.3) (Read only if Jet > C & INOPT \pm -2)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	R	INPUTW F10.3	Jet to free stream velocity ratio $\mathrm{Vj/V}_{\infty}$.
11	PHI	INPUTW F10.3	Jet exhaust angle relative to Y-Z plane (Jet 1)
21	PSI	INPUTW F10.3	Jet exhaust angle relative to X-Z plane (Jet 1)

31	ХJ	INPUTW F10.3	X location of Jet 1
41	YJ	INPUTH F10.3	Y location of Je: 1
51	ZJ	INPUTW F10.3	Z location of Jet 1
61	DIAJ(1)	INPUTW F10.3	Diameter of jet exit (use consistant units)

W-4 WESTON JET IDENTIFICATION CARD (Jet 2) (8F1C.3) (Read only if Jet >C, INOP1 \pm -2, NJ >1)

CCL UMN	CODE	RCUTINE FORMAT	EXPLANATION
1	RR (2)	INPUTW F10.3	See R above
11	PHI(2)	INPUTW F10.3	See PHI above
21	PSI(2)	INPUTW F10.3	See PSI above
31	XJ(2)	INPUTW F10.3	See XJ above All for Jet exit no. 2
41	YJ(2)	INPUTW F10.3	See YJ above
51	ZJ(2)	INPUTW F10.3	See ZJ above
51	DIAJ(2)	INPUTW F10.3	See DIAJ(1) above

Note: Cards W-1, W-2, W-3 and W-4 must be input for each angle of attack and for each jet system i.e. number of sets of W-1 through W-4 = Jet x IATACK. (Jet is from card H-2 and IATACK is from card H-6).

WOOLER JET METHOD

W0-1	WOOLER O	CONTROL CARDS	NO.1 (4II	Read only if J>0 and Inopt = - 1 and NJets = 1 (1st Jet)
COLUMN	CODE	ROUTINE FORMAT		EXPLANATION
1	MULT	JET3IN I10		Number of jets in configuration mult = 1 on 2
11	IGEOM	JET3IN I10		Not used by this version of code
21	NPS	JET3IN I10		Number of integration intervals per jet segment $3 \le NPS \le 10$
31	NOIT	JET3IN I10		Number of iterations to be performed on mutual interference velocities between jets
				<pre>Iter = 2 normally (See Ref. 4-2, pp. 18-20) (Leave blank mult = 1)</pre>
41-80	SUBTITLE	JET3IN 4A10		Additional title for this particular case
W0-2	WOOLER C	ONTROL CARD#	2 (4110)	Read only if J>O, IN OPT = -1 and NJet > 1 (2nd Jet)
COLUMN	CODE	ROUTINE FORMAT	\	EXPLANATION
1	MULT	JET3IN I10		
11	IGEOM	JET3IN I10	}	See above
21	NPS	JET3IN I10		
31	NOIT	JET3IN I10)	

MO-3	WOCLER JE	ET DATA CONTROL (110,	, 7F10.5) Read only if MULT > C
COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	N	JET3IN I10	Number of intervals to be used in the numerical integration of the jet center line, N \leq 100
11	GS	JET3IN I10	Interval size to be used in the intergration of the jet center line as fraction of leading jet diameter
21	SIGH	JET3IN F10.5	Yaw Angle Degrees
31	THETA	JET3IN F10.5	Pitch Angle Degrees
41	FEE	JET3IN F10.5	Roll Angle Degrees
51	YGP	JET3IN F10.5	Height Above Ground, FT
WO-4	WOOLER JE	T NO. 1 DEFINITION (8F10.0) Read only if MULT > 0
COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
COL UMN 1	CODE XJ1(1)		EXPLANATION X location of jet 1 exit
		FORMAT JET3IN	
1	XJ1(1)	FORMAT JET3IN F10.0 JET3IN	X location of jet 1 exit
1	XJ1(1) YJ1(1)	FORMAT JET3IN F10.0 JET3IN F10.0 JET3IN	X location of jet 1 exit Y location of jet 1 exit
1 11 21	XJ1(1) YJ1(1) ZJ1(1)	FORMAT JET3IN F10.0 JET3IN F10.0 JET3IN F10.0 JET3IN	X location of jet 1 exit Y location of jet 1 exit Z location of jet 1 exit
1 11 21 31	XJ1(1) YJ1(1) ZJ1(1) PHID(1)	FORMAT JET3IN F10.0 JET3IN F10.0 JET3IN F10.0 JET3IN F10.0 JET3IN F10.0	X location of jet 1 exit Y location of jet 1 exit Z location of jet 1 exit Jet 1 exhaust angle ø deg
1 11 21 31 41	XJ1(1) YJ1(1) ZJ1(1) PHID(1) PSID(1)	FORMAT JET3IN F10.0 JET3IN F10.0 JET3IN F10.0 JET3IN F10.0 JET3IN F10.0 JET3IN F10.0	X location of jet 1 exit Y location of jet 1 exit Z location of jet 1 exit Jet 1 exhaust angle ø deg Jet 1 exhaust angle v deg

WO-5 WOOLER JET NO. 1 MIXING VALVES (8F10.0)

COLUMN	CODE	RCUTINE FCRMAT	EXPLANATION
1	A1	JET3IN F10.0	Ratio of effective core diameter to jet exit diameter for annular or vaned nozzles. (For uniform jet set = 1.0.
11	B1	JET3IN F10.0	Jet mixing parameter for annular or vaned nozzles. (see Ref. 4-2 for details)

WO-6 WOOLER JET NO. 2 DEFINITION (8F10.0) (Read only if mult >1)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	XJ2(1)	JET3IN	
11	YJ 2(1)	F10.0	See Wooler Jet 1 data card above for
21	ZJ2(1)		definitions
31	PHID(2)		
41	PSID(2)		
51	DJET2(1)		
61	# W2(1)		
71	-4N(2)		

WO-7 WOOLER JET #2 MIXING VALVES (8F10.0)

COLUMN	CODE	ROUTINE FORMAT		EXPLANATION
1 11	A2 B2	JE T3IN F10.0	See Al	and B1 above for definitions

WO-8 WOOLER COALESCED JET INPUT (8F10.0)

Note: Cards wo-1 through wo-8 must be input for each angle of attack and for each Jet system. i.e. Number of sets of wo-1 through wo-8 = Jet \times IATACK. (Jet is from card H-2 and IATACK is from card H-6)

RECTANGULAR JET METHOD

R-1 RECTANGULAR JET CONTROL CARD (1615)

CCLUIN	CODE	ROUTINE FORMAT	EXPLANATION
1	I CONF G	RECJET 15	Nozzle configuration specification = 1 blunt = 2 streamwise
6	NSIKK	RECJET 15	Number of source/sink lines used in model, 1 \leq NSINK \leq 5
11	SNEGV	RECJET 15	Number of segments into which each vortex curve is divided, < 30
16	NSEGS	RECJET 15	Number of segments into which each source/sink line is divided, ≤ 15

R-2 RECTANGULAR JET DEFINITION CARD (6F10.3)

<u>COL UPIN</u>	CODE	ROUTINE FORMAT	EXPLANATION
1	R	RECJET F10.3	Jet-to-freestream velocity ratio
11	DELTAJ	RECJET F10.3	Jet injection angle, degrees (rut used)
21	S	RECJET F10.3	Length downstream of jet exit that vortex and source/sink line are to extend, normally 15 to $^{\circ}0$ jet diameters.
31	XJ	RECJET F10.3	X Location of jet exit
41	YJ	RECJET F10.3	Y Location of jet exit
51	ZJ	RECJET F10.3	Z Location of jet exit
61	PHI	RECJET F10.3	Jet exhaust angle relative to positive Z axis
71	PSI	RECJET F10.3	Jet exhaust angle relative to X axis

R-2A RECTANGULAR JET NOZZLE CARD (8F10.3)

CCLUM	CODE	ROUTINE FCRMAT	EXPLANATION
1	DE	RECJET	Jet equivalent diameter $\frac{4(Area)}{De = \pi}$
11	AR	RECJET F10.3	Jet nazzle aspect ratio (length/width)

R-3 SOURCE/SINK STRENGTH INPUT CARD (8F10.3) (Input if nsink >0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	SIGMA(1)	RECTJET F10.3	Strength of source/sink for source/sink line no. 1
11	SIGMA(2)	RECTJET F10.3	Strength line no. 2
21	SIGMA(3)	•	Strength line no. 3
31	SIGMA(4)	•	Strength line no. 4
41	SIGMA(5) (input NS	" SINK valves)	Strength line no. 5

Note: Cards R-1 through R-3 must be input for each angle of attack and for each Jet systemm. i.e. Number of sets of cards R-1 through R-3 = JET x IATACK. (JET is from card H-2 and IATACK is from H-6).

VISCOUS SOLUTION

HV-1 VISCOUS FLOW CONTROL VARIABLES

COLUFIN 1	CCDE RI	ROUTINE FCRMAT HINIT (BSETUP) Free Format	$\frac{\text{EXPLANATION}}{\text{Reynolds number per foot}}$ $R_{I} = \frac{U_{on}}{\nu}$	
			υ = kinematic viscosity	
	UI	HINIT (BSETUP)	Freestream velocity (ft/sec)	
		Free Format	If input as zero, program will use Mach number input to Hess program	
HV-2 VISCOUS INPUT CONTROL CARD				
COLUMN	CODE	ROUTINE FORMAT	EXPLANATION	
1	IDEFLT	HINIT (BSETUP)	<pre>= 0 Data input below = 1 Defaults variables</pre>	
		Free Format	TO: LG15 = 1 LG17 = 0 LG20 = 0 LG32 = 1 TI = 518.67°R SMP = 0 RL = 1/12 KPRINT = 0 ITPIFL = 0 IMP2FL = 0 See next card for explanation of	
			these values.	

HV-3 VISCOUS CONTROL VARIABLES (1) (Input only if IDEFLT = 0)

COLUMN	CODE	RCUTINE FORMAT	EXPLANATION
1	LG15	HINIT (BSETUP) Free Format	Boundary layer method selection = 0 2 dimensional boundary layer equations used.
			= 1 3 dimensional infinite yawed wing equation used.

LG17	HINIT (BSETUP) Free Format	Transition intermittency flag = C Transition from laminar to turbulent flow is instantaneous.
		= 1 Transition from laminar to turbulent flow is gradual.
L G20	HIMIT (BSETUP) Free Format	Compressibility flag = C Incompressible flow equations solved.
		= 1 Compressible flow equations solved.
L 632	HINIT (BSETUP) Free Format	Profile print flag = 0 All boundary layer velocity profiles will be presented.
		= 1 Print output summary data only. (No velocity profiles will be presented.)

HY-4 VISCOUS CONTROL VARIABLES (2) (Input only if IDEFLT = 0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	TI	HINIT (BSETUP) Free Format	Free stream temperature, T_{∞}
	SWP	HINIT (BSETUP) Free Format	Sweep angle in degrees (input only if LG15 = 1)
	RL	HINIT (BSETUP) Free Format	Geometry scale factor. The X-Y coordinates are multiplied by this parameter before calculations are started.

HV-5 VISCOUS CONTROL VARIABLES (3) (Input only if IDEFLT = 0)

COLUMN	CODE	ROUTINE FCRMAT		EXPLANATION
1	KPRINT	HINIT (BSETUP) Free Format	= 0	Output data from BSETUP defining boundary layer cases suppressed.
			= 1	All data output from BSETUP.
	ITPTFL	HINIT (BSETUP)	= 0	Output data from boundary layer routine suppressed.
		Free Format	= 1	Output data from boundary layer routine printed.

IMP2FL HINIT
(BSETUP)
Free Format

- = 0 Input data to boundary layer routine not printed.
- = 1 Input data to boundary layer routine is printed.

HV-6 VISCOUS TRANSITION LOCATION CARD

COLUM	CODE	ROUTINE FORMAT	EXPLANATION
1	LG16	HINIT (BSETUP) Free Format	Boundary layer transition location flag. = 0 Transition point is input (sta- tion number).
			= 1 Transition point will be calculated by the Michel method.
HV-7	VISCOUS	TRANSITION LOCATION	(Input only if LG16 = C)
COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	NXT	HINIT (CSETUP) Free Transition	Station number at which flow becomes turbulent. For all laminar flow, set NXT greater than expected number of points. For all turbulent flow, set NXT = 2. Program will not work if NXT set to less than 2.

Note: Input HV-6 and HV-7 (if necessary) for all lifting sections at each angle of attack if ISECT = number of lifting sections. Then input (ISECT)(IATACK) values.

3.0 VAPE INPUT FLOW CHARTS.

This section contains a series of flow charts to assist the user in deciding what cards need to be input for the case in question. The various input cards are explained in Section 2 and card set numbers are assigned for each of the options applicable i.e. E-1 refers to the primarily control card in the executive system section. Each option is presented separately with the first subsection (3.1) indicating which options will be exercised. No attempt is made in this section to show program execution logic or internal data transfer logic.

3.1 MAIN VAPE PROGRAM.

In the VAPE main program control routine (program vape), the input determines which options are to be executed. Since the inlet analysis program consists of a larger number of options, these are also selected in this main routine.

Figure 4-1 presents the main program flow as determined by the input parameters IPROG and IRPG2. As can be seen in the figure IPROG determines the starting option and IPRG2 and to a certain extent IPASS determines the final option. For example, IPROG = 1 and IPRG2 = 7 indicates that the program will perform all options available through the Hess three dimensional program, but does not indicate anything about jet solutions, which will be referenced later. Therefore, if only a three-dimensional Hess solution is desired then IPROG = 7 and IPRG2 = 7. Since the input data required is input within each option, this chart also indicates the input required and the order of the input. For example, if IPROG = 2 and IPRG2 = 7 then the data for the options, ECD, COMBYN, TRANSG, VISCUS, GEOMOD and Hess are required in that respective order.

It should be noted that options 1 through 6 (SCIRCL through GEOMOD) are all inlet analysis options.

3.2 STOCKMAN INLET ANALYSIS SUB-PROGPAM INPUT.

The charts presented in this section are for options 1 throught 6 of the previous section (Figure 3-1). They are imput in the order specified on the primary control card. The cards are identified by a card set number as given in section 2.0.

The logic of these charts are indicated in Figure 3-2 by observing that card IA-8 in input in the data set only if ENREED is not equal to -1, 10, or 1. Figure 4-2 shows the logic of input to option number 1 (subroutine SCIRCL).

Figure 3-3 shows the primary logic of the axisymmetric potential flow program data input sequence. The subroutine call to part 1 is where most of the data in input. Subsequently part 1 calls BASIC 1 and BASIC 2 for further input. Two very important items must be noted in Figure 3-3:

(1) Card AP-1 has an input quantity NIN, which is the flag to tell the program where the input data is orginating. If NIN = 5 then the data for the potential flow routine must be input on cards. If NIN = 20 then the data will be transferred from subroutine scircl and no data will be input on cards. The normal case is NIN = 20.

(2) If NIN = 5 then two sets of data must be input to the potential flow routine. One for an open ended body and one for a closed ended body. See Reference 3-1 for further information.

The input logic to the combination option of the inlet analysis method is presented in Figure 3-4. The chart is sufficient to indicate the flow if input data to this program.

The next option is the TRANS program which takes data output from the combination routine and translates scales and sets up in correct format for input to the viscous routine.

Since most of the data is transferred internally, only one value on one card is required in this routine as input. Therefore, no logic diagram is presented for this option.

The last option in the inlet analysis program is the viscous option where the boundary layer effects are computed. Again this data input is very straight forward and is explained adequate y by Figure 3-5.

3.3 HESS THREE DIMENSIONAL POTENTIAL FLOW PROGRAM.

All of the data required for Hess program including the jet data and viscous data is read in subroutine HINIT and transferred to unit NT14 for use by the various subroutines. Since the data input is easier to understand when placed in the correct logic flow if the program the subroutine names where the data is required (and read from unit NT14) are used as reference. The input to this part of Vape requires some careful planning to make efficient use of the program.

The majority of the expense in a Hess run is the matrix formation and solution. The solution is such that the incorporation of additional right hand sides to the problem, or additional angles of attach are second order as far as computation time is concerned. Therefore it is prudent to run all of the cases that are required at one time. There fore, if multiple angles of attack are input with repeat values, i.e. α =0, 5, 10, 0, 5, 10 etc. then the inlet velocity matrix of values and the jet solutions can be altered to give a complete range of cases. A typical run might consist of 9 angles of attack 0, 5, 10, 0, 5, 10, 0, 5, 10 and three different jet velocity cases with associated inlet velocities. A sample input for such a case is presented in a later section.

The logic flow chart shown in Figure 3-6 should be studied carefully to avoid any problems.

Since the input to the jet and viscous methods are relatively simple and are read from the Hess program, the charts for these routines are presented in this section as Figures 3-7 through 3-10.

Figure 3-1. Main Program Logic Flow

ORIGINAL PAGE 19 OF POOR QUALITY

Figure 3-2. Input logic flow for Geometry Module of Stockman's Inlet Analysis Program

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3-3. Input logic flow for Axisymmetric Potential Flow Module of Stockman's Inlet Analysis Program

Figure 3-4. Input logic flow for Combination Module of Stockman's Inlet Analysis Program

Note: If ISTO(1) .GE. 0 than cards V-2 through V-15 are input on cards and transferred to Unit 31 for future runs

Figure 3-5. Input logic flow for Viscous Module of Stockman's Inlet Analysis Program

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 3-6. INPUT LOGIC FLOW FOR HESS THREE DIMENSIONAL POTENTIAL FLOW PROGRAM

Report No: NADC-77119-30

ORIGINAL PAGE 19 OF POOR QUALITY

Figure 3-7. Input logic flow for Vought Wooler Jet Module

Figure 3.8. Input logic flow for Vought/Weston Jet Module

Figure 3-9. Input logic flow for Vought Rectangular Jet Module

4.0 SAMPLE C'SE IMPUT

4.1 SAMPLE CASE FOR INPUT TO INLET SMALYSIS ROUTINE

This section contains two sample input cases. The first example is representative of the input required to analyze an inlet configuration to determine the inlet separation boundaries. This case, therefore, includes input for the geometry routine, the potential flow routine, the combination routine, and the viscous routine. Note that since the data is transmitted internally from one routine to the next, that only a minimum amount of input is required. For example, only one card is input for the potential flow routine.

The first case is for the QCSEE Inlet using the following data:

 $A_{H1}/A_{TH} = 1.37$

2:1 Ellipse Internal Lip Shape

 $D_{H1}/D_{M} = .905$

 $\alpha = 40$ degrees

٧ 90 KTS

ORIGINAL PAGE IS

ORIGINAL PAGE 18 OF POOR QUALITY

The second example is representative of the input required to analyze an inlet configuration to determine the forces and moments acting on the inlet. This case, therefore, includes all of the input data contained in Case 1, with additional input data added for the force and moment program.

This case is also for the CCSEE Inlet using the following data:

ORIGINAL PAGE 18 OF POOR QUALITY

				. 3 . 1	fue a		
- <u>• • • •</u>		• • <u>+5ī</u>	31ti		<u>2911</u>		
.2003	.4613		.23.3	.2173			ľ
.154.	.1227		.47. 4	97	.3314		<u> </u>
			*****				`
0	•••						1
0.10	J . i	2.4	3.3		5.0		
	1 1		_				į
_65 <u>0</u>			1-3	295.23	1.5	0 1 1 0 1 1 •)*333	į.
1		1 1	1 1	3 6	1 2	C 1 1	
.5995		330.	543		3.	.)4333	
· ·		<u> </u>	1,1	<u> </u>	i	1.3	
.635159	4	••	1.9		- 90	.7e	
1.6		# ●	4.4		3.0	0.0	ŀ
	_UC, EE !	<u> </u>	_GE&;	ONL		INPUT PEDFILE	
•							i
35							1
3.333	<u>-• 618 —</u>		845				
.696	-112	.:23	-14-	.lôû	.245		- 1
.326	• ••	. +63	.56 265	.543	•720 • • • • • •		1
_ <u>.8.</u>	_ <u>• \$56</u> 5 • 2 8 8	<u>.:.:33</u>	<u> </u>	<u> </u>	6.483		
7-283	3 • 0 € j	10.	12.	14.	16.		1
32			***				
1.60	.5684	. 5436	·5×65	-4983	•÷tě1		
.468+	. 4565	.4451	.4367	.4281	.3948		1
.3663	3,62	_	-3161	.3029	-2911		_ 1
.28.3	.2613	.24.3	.2303	.2173	.2554		
.1545	-1227	. 0943	-0764	· i 497	314		ł
	ن و ف						
6							
33	0.0	3.6	0.0	3.D	8.3		
				295.23			
-17	7 -0	G • ü	0.3	295.23	1.8	1.6	1
393						-	
	E (3-1-	6 TILT NACE	E CAPE				
21 21	35	PO ITTI MACC	LLE GALE				<u>I</u>
	2.639	-23.3					- 1
. 1323	5.439	-5.1962					
777		-1.7536					i
2:316	5.547	-1.3415					
.36266	5-441	71093				· ·	
.57403	3.320	52796					l l
.7932.		39026					
	>-142						1
1.2556		21 756					i
	2.37	15,153					 -
1.7336		i37 99 i23 55					- 1
9750 0155.5		02397					Į.
2.4765		.82221					
2.7100	5.163	.33594					ŧ
2.3656		.0-846					
3.2118	5.627	6995					T
3556	2.643	.07225					}
3.5966		50271					
3.9426	563	. 19249					
4-1828	5.167	-151-					
<u></u>	6.039	20.0					
328	2.142	2.1259				I	NPUT FOR
.1629 3318	3+254 6+3 6 2	-50132 3257					DRCE AND
.5235	<u> </u>						OMENT
.7319	6.540	.23178					
		.17642				R	UTINE
. 7013	0.227						•
.4435	0,553 . 2,583 _						
1.173 1.377	_6.581_	13917					
1.173							
1.377	_ Q. j <u>B</u> J_ 0.617	13317 -1:597					
1.377 1.377 1.647 1.657 2.665		.13417 .1:597 .37916 .05321 .03528					
1.373 1.377 1.647 1.657		.13417 .1:597 .37916 .05321 .03528					

ORIGINAL PAGE TO OF POOR QUALITY

```
-----
2.553
                           .0.507
              2.672
               2.073
   2.756
                           غونر
3 - 0
             . 6 . c 7 3.
   3. . . . 9.
               73ء.د
   3.4.3
               ..673
   3.-47
               ٤٢٤. د
                           نوونه
   3.724
                           3.0
0.0
              3.675
   3. 7: 3
              3.673
   ***25
              0.673_
   + . 65 4
+ . 66 7
               0.073
              0.073
                           0.0
               2.673
                           3.3
3.3
   5.121
   3.3: 4
               ā. t75
   5.55e
               ċ.073
 غة.ن.
5.ن.غ
               5.673
0.673
                           3.5
               5.673
   5.236
   5.522
5.755
               0.673
0.673
                            3.6
                            8.5
   3.503
               5.673
                            1.0
   7.222 0.573
7.456 6.073
ALPHA=71.
                            ...
                             H=23.419
  $IN PARELO. 0.210 12H3=317.3. VFLIGH: 128. - VACA4G=00.7. AGALPH4=70...
SIDSLIP=0.0, S=3.0. L=0.0 8
30. 19
                            2.666
1.6869
               _وخ
  $.E
                                                                                           3.81i1
                                                                  2.7222
                                                                               3.2667
                                        1.6333
                                                      2.1770
               .5444
                            ..9318
    ..3556
              ...
```

ORIGINAL PAGE 19 OF POOR QUALITY

4.2 SAMPLE CASE FOR IMPUT TO HESS THREE DIMENSIONAL PROGRAM

This is a sample input case for the configuration of Reference 4.1. This case is defined to read in single values of inlet velocity for each subcase to be considered. In this run, a subcase is defined to be one combination of angle of attack, one jet velocity ratio, and one inlet velocity. There are nine (9) subcases defined in this input. The flags are set to run a case with the data for a Yought/Weston jet model. The input data for the jet model are not shown in this listing, but are shown later under the data presented in Section 4.3. The data for the jet models would appear directly before the 999. card shown in the following listing:

15	1	1		1	1	1	3				
324. :	•	46.25	,	2.35	•	•	J				
6.9											
3											
0. J		. 3	è	. G	J.		10		J. S	9.9	ð.
j. 8	_	<u></u>	- ~ 🕹	i	£•.			2		<u>5</u>	
19.	2	• 0									
3.02	15	0.û 1	4-	-3.55	-	1	_				11
	2	3	- 3	3			18		- C	19	
3	Ģ	₹.	3	•	1.	-	10				
	<u>.</u>	3	. 1		O	6	6	2	ــــ الم	23 .	29
3	6										
5	Š										
20.2_	-			وجدي		20.2		_2_1_	4a5&	EU. NO	er
-29.2		b + C		-4.56		26.2	-	0. 9	-4.5ô		
-23.2		C. 6		-4.56	-	26.2		9. E	-4.58		
-• 2		<u></u>		_26,5&		2 1.2 .		_ -:-:-:			
-2 G. 2		a. c		-4.58	-	Z.05		8. J	-4.58		
-21.2		E • û		-4.56		_		_			
_+1 <i>Z</i> _ 5		0, i		عي.يد		17.5.		-6-31	-		
-17.5		0.58		-3.3G		17.5		9.70	-3.53		
-17.5		0.93		-3. éC		17.5		8. 97	-4.15		
17.5.		a_s		_sin_EE		L7.5.		<u>u. £9</u>			
-17.5		6-66		-5.08	-	17.5		0, 39	-5.38		
-17.5 13.9		0.3 0_6		-5.47 -1.51	_	13.G		1.62			
13, 7 -13, 9		1.69		-2.17		13.9		1.43	-2, 64		
~13.9		1.55		-3.26		13.9		1.63	-3.88		
-13-9		1-63		-b-he		13.9		_1.51			
-13.9		1.20		-5.55		13.9		6.65	-5.94		
-13.9		8.6		-6. 01				••••	,,,,	•	
9.9		0_0		-iale		9.9		_9.93.			
-9.9		1.51		-1.36		-9.9		1. 42	-2.18		
-9.9		1.94		-2.95		-9.9		1. 98	-3.88		
9-9-						-9.3.		_1. 32	25. 39.		
-9.9		1-47		-5.96	•	-9.9		c. 89	-6.25		
-9.9		0.0		-6.32							
		 .		i - <u></u> <u></u> i		-5-15		1.28			
-5. 65		2.13		-8.39		-5 - 85		2. 25	-1.55		
-ş, 85		2.25		-2.72		-5.8>		2.25	-3.86 -6.83		
<u>-5. A5</u> -5. 85		2,25 _ 1,90		_=5 _86 -5-48		-5.85		_ _2, 17 _ 1, 13			
-5. 65		1. 90 0. E		-6.56	•	-5.85		10 73	-6.56		
-5.05 		0.0		-0.56 		-5.45		1-23	0.25	FUS_A_	
-5.85		2.10		-3.39		-5.85		2. 25	-1.55		
-5.85		2.25		-2.72	•	7663		>	-4095		
-2.75 _				0.56		-2-75		1.20	. 0.35		
-2.75		2.15		-0.39		-2.75		2.37	-0.85		
-2.75		2.37		-C . 85							

ORIGINAL PAGE IS OF POOR QUALITY

		2.22		2.£:		_NAG_EAC2%
-5.0:	3.63	-1 • &ė	-5.85	3.43	-1.16	
-5.85	42	-9. £2	-5.45	5.51	-5.62	
		<u></u>	. <u></u>		2.17	
-5. 85	7.06	-3. ZE	-5.8;	6. 5.2	-6.27	
-5. A5	5.51	61	-5.8F	4 5	-6.9 <u>1</u>	
	<u>3</u> •48		=5.35	3, 13	3,57	
-5 85	2.07	-2.72	-5.63	Z. 25	-2.72	
-4.7.	5.35	-2. : 3	-4.7i	2. 4.	-2.63	
#1 7 h		1-2-	••.	₹ ₹£	- 4.6.7	
		ـــادمند-ـــ		5。5.3		
-4.70	6.75	-0.7E	-4.7:	?. 5 ?	-1.00	
-L 76	7.55	-3.26	-4.7.	6. 37	-4.54	
-4.70	5.70	-5.24	-4.70	4, 27	-5.24	
-4.75	3.22	-4.EE	-4.73	2.75	-6.04	
Zi	2.48	3.46		2.22	بالمجارة والأكليب	
-2.75	2.37	-0.85	-2.75	Z. 91	-ë. 35	•
-2.75	2.51	-0.85	-2.75	3. 34	-?.47	
-2.75	b.27	Back	2.75	5.Z: _		
-2.75	6 • 67	-9.EZ	-2.75	7.57	-1.36	
-2.75	7.57	-3.26	-2.75	6. 97	-4.54	
2.75	5.i	25.26	-2.7:	4-27	=5 . 24	
-2.75	3.22	-4.EE	-2.75	3, 22	-4.66	
-2,75	3.22	~4.Eb	-2.75	2.41	-4.66	
-5.45	2.25	+2.72	-5.85		3.44	FUS 9
-5. 85	2.25	-5.84	-5.85	2. 17	-5.96	
-5. 85	1.98	-6.48	-5.85	1, 13	-e. 56	
=5.6à		-6.56				
-2.75	2.41	-4.65	-2.75	2.41	-4- 66	
-2.75	2.41	-5.32	-2.75	2.33	-5.96	
-2.75	1.94	-6.56_	-2.75		6.60	
-2.75	0.0	-6.60				
-2.75	6.0	C.54	-2.75	1. 28	0.35	FUS NAC A PR
-2.75	2.16	-2.39	-2.75	2.32	-6.85	
-2.75	£.91	-2.65	-2.75	2. 91	-0.55	
-2.75	3.34	-0.47	-2.75	4.27	9.04	
22.25	5.70		-2.75	6.87	ee . 62	
-2.75	7.57	-1.86	-2.75	7.57	-3.26	
-2.75	6-87	-4.54	-2.75	5.70	-F.24	
		5.24	2.75	3.22	-4,66	•
-2.75	3,22	-4.66	-2.75	2.41	-4.66	
-2.75	2.41	-5.32	-2.75	2. 33	-£. 98	
-2.25	1.G0	5.56	-2.75	1.29	=6.62_	
-2.75	6.6	-6.60				
-0.45	8.8	8.54	-9.45	1 1	i.47	
	1.90		45	1.91	CC	•
-6. 45	2.63	0.64	-6.45	3. 50	6.04	
-0.45	3.85	0.64		4.38		•
	5.Zh					
-3.45		A 27	-0.45		0.27	
-44-43		0.27	-0.65	6.91	E&&3	
-a -e	7-43	-1.71	-0.45 -0.45	7.49	-8.43 -3.16	
-0.45	7 • 4 3 6 • 51	-1.71 -4.31	-0.45 -0.45 -i.45	5. 91 7. 49 5. 74	-8.43 -3.16 -5.08	
	7.43 6.51 4.30	-1.71 -4.31 -5.16	-0.45 -0.45 -0.45	6. 91 7. 49 5. 74 4. 38	-8.43 -3.16 -5.08 -5.08	
-0.45 -6.45	7.43 6.51 6.38 3.41	-1.71 -4.31 -5.16 -5.06	-0.45 -0.45 -0.45 -0.45	6. 91 7. 49 5. 74 4. 38 2. 52	-8.43 -3.16 -5.08 -5.08 -5.08	
-3.45 -6.45 -r.45	7.43 6.51 4.30 3.41 2.52	-1.71 -4.31 -5.16 -5.66	-0.45 -0.45 -1.45 -0.45 -0.45	6. 91 7. 49 5. 74 4. 38 2. 52 2. 44	-8.63 -3.16 -5.08 -5.08 -5.08 -5.08	
-0.45 -6.45 -1.45 -8.45	7.43 6.51 	-1.71 -4.31 -5.16 -5.66 -5.68	-0.45 -0.45 -0.45 -0.45	6. 91 7. 49 5. 74 4. 38 2. 52	-8.43 -3.16 -5.08 -5.08 -5.08	
-3.45 -8.45 -1.45 -8.45 -3.45	7-43 6-51 	-1.71 -4.31 -5.16 -5.06 -5.60 -6.60	-0.45 -0.45 -0.45 -0.45 -0.45 -6.45	6, 91 7, 49 5, 74 4, 38 2, 52 2, 44 1, 39	-8.63 -3.16 -5.08 -5.08 -5.08 -6.01 -6.62	FUS NAC B PP
-3.45 -8.45 -1.45 -3.45 -3.45	7-43 6-51 	-1.71 -4.31 -5.10 -5.06 -5.68 -6.60 0.54	-0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	6. 91 7. 49 5. 74 4. 38 2. 52 2. 44 1. 19	-8.43 -3.16 -5.08 -5.18 -5.38 -6.01 -6.62	FUS NAC 9 PR
-3.45 -6.45 -7.45 -3.45 -3.45 -8.45	7.43 6.51 38 3.41 2.52 2.17 0.9 0.6	-1.71 -4.31 -5.05 -5.06 -6.60 -6.60 -6.54	-0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	5. 91 7. 49 5. 74 4. 38 2. 52 2. 44 1. 19	-8.63 -3.16 -5.08 -5.18 -5.38 -6.01 -6.62 C.47	FUS NAC 9 PR
-3.45 -6.45 -7.45 -3.45 -3.45 -9.45 -0.45	7.43 6.51 38 3.41 2.52 2.17 0.9 0.8 1.9; 3.50	-1.71 -4.31 -5.05 -5.05 -5.68 -6.60 0.54	-0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	5. 91 7. 49 5. 74 4. 38 2. 52 2. 44 1. 19 1. 01 2. 63 4. 38	-8.43 -3.16 -5.08 -5.18 -5.38 -6.01 -6.62 C.47 8.27	FUS NAC 9 PR
-3.45 -6.45 -7.45 -3.45 -3.45 -9.45 -6.45 -6.45	7.43 6.51 	-1.71 -4.31 -5.05 -5.68 -6.60 -6.60 0.54 -1.64 0.27	-0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	5. 91 7. 49 5. 74 9. 38 2. 52 2. 44 1. 19 1. 01 2. 63 4. 38 6. 91	-8.43 -3.16 -5.08 -5.18 -6.01 -6.62 0.47 8.04 0.27 -9.43	FUS NAC 9 PR
-3.45 -6.45 -7.45 -3.45 -3.45 -6.45 -6.45 -6.45	7-43 6-51 4-38 3-41 2-52 2-17 0-9 4-4 1-9: 3-50 5-74	-1.71 -4.31 -5.16 -5.68 -6.60 -6.60 0.54 1.65 0.27	-0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	5. 91 7. 49 5. 74 4. 52 2. 54 1. 29 1. 01 2. 63 4. 38 6. 91 7. 49	-8.43 -3.16 -5.08 -5.0A -5.01 -6.62 -6.47 -6.62 -6.27 -7.43 -7.43	FUS NAC 9 PR
-3.45 -6.45 -7.45 -3.45 -3.45 -6.45 -6.45 -6.45	7.43 6.51 38 3.41 2.52 2.17 0.9 8.6 1.91 3.50 5.74 7.49 6.91	-1.71 -4.31 -5.16 -5.66 -6.60 -6.60 -6.54 -1.64 0.27 -1.71 -4.31	-0.45 -0.45 -0.45 -0.45 -6.45 -0.45 -0.45 -0.45 -0.45 -0.45	6. 91 7. 49 5. 74 4. 38 2. 52 2. 44 1. 39 1. 01 2. 63 4. 38 6. 91 7. 49 5. 74	-8.43 -3.16 -5.08 -5.0A -5.01 -6.62 C.47 -8.06 0.27 -9.43 -7.16 -5.00	FUS NAC 9 PR
-3.45 -6.45 -1.45 -3.45 -3.45 -6.45 -6.45 -6.45 -6.45	7.43 6.51 4.38 3.41 2.52 2.17 0.9 0.8 1.9; 3.50 5.74 7.49 6.91 4.36	-1.71 -4.31 -5.06 -5.08 -6.60 -6.60 -6.50 -7.10 -7.10 -4.31 -5.60	-0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	6. 91 7. 49 5. 74 4. 38 2. 52 2. 44 1. 39 1. 01 2. 63 4. 38 6. 91 7. 49 5. 74 3. 41	-8.43 -3.16 -5.08 -5.08 -6.01 -6.62 C.47 -8.06 0.27 -9.43 -7.18 -5.00	FUS NAC 9 PR
-3.45 -6.45 -7.45 -3.45 -3.45 -8.45 -6.45 -6.45 -6.45 -6.45	7.43 6.51 4.38 3.41 2.52 2.17 0.9 8.6 1.94 3.50 5.74 Z.69 4.38 2.52	-1.71 -4.31 -5.05 -5.08 -6.60 -6.60 -6.50 -7.10 -7.10 -7.10 -7.10 -7.50 -7.50 -7.50	-0.45 -0.45 -0.45 -0.45 -6.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	6. 91 7. 49 5. 74 4.38 2. 52 2. 44 1. 19 1. 01 2. 62 4. 38 6. 91 7. 49 5. 74 3. 41 2. 46	-8.43 -3.16 -5.08 -5.08 -6.01 -6.62 0.47 -8.06 0.27 -9.43 -5.00 -5.00	FUS NAC 9 PR
-3.45 -6.45 -7.45 -3.45 -3.45 -9.45 -6.45 -6.45 -6.45 -6.45 -6.45	7.43 6.51 4.38 3.41 2.52 2.17 0.9 0.6 1.94 3.70 5.74 7.49 6.91 4.34 2.52	-1.71 -4.31 -5.05 -5.08 -6.60 -6.60 -6.50 -7.27 -1.71 -4.31 -5.60 -5.66	-0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	6. 91 7. 49 5. 74 4. 38 2. 52 2. 44 1. 39 1. 01 2. 63 4. 38 6. 91 7. 49 5. 74 3. 41	-8.43 -3.16 -5.08 -5.08 -6.01 -6.62 C.47 -8.06 0.27 -9.43 -7.18 -5.00	FUS NAC 9 PR
-3.45 -6.45 -7.45 -3.45 -0.45 -0.45 -6.45 -6.45 -6.45 -6.45 -6.45 -6.45	7-43 6-51 4-30 3-41 2-52 2-17 0-9 8-8 1-94 3-30 5-74 Z-69 6-91 4-36 2-52 2-17 8-0	-1.71 -4.31 -5.16 -5.68 -6.60 -6.60 -6.50 -7.24	-0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	5. 91 7. 49 5. 74 4.38 2. 52 2. 44 1.19 1. 01 2. 63 4. 38 6. 91 7. 49 5. 74 3. 41 2. 46 1. 89	-8.43 -3.16 -5.08 -5.08 -6.01 -6.62 -6.62 -6.62 -7.43 -7.43 -7.43 -7.43 -7.43 -7.66 -6.60	
-3.45 -6.45 -7.45 -3.45 -0.45 -6.45 -6.45 -6.45 -7.45 -7.45	7-43 6-51 4-38 3-41 2-52 2-17 0-9 8-8 1-9; 3-76 7-49 6-91 4-38 2-52 2-17 8-0	-1.71 -4.31 -5.18 -5.68 -6.60 -6.60 0.54 -1.65 0.27 -1.71 -4.31 -5.60 -5.56 -6.56	-0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	6. 91 7. 49 5. 74 4. 38 2. 52 2. 44 1. 19 1. 01 2. 43 4. 38 6. 91 7. 49 5. 74 3. 41 2. 46 1. 09 1. 21	-8.43 -3.16 -5.08 -5.01 -6.62 C.47 8.27 -3.43 -3.16 -5.08 -5.08 -6.60	
-3.45 -6.45 -1.45 -3.45 -3.45 -6.45 -6.45 -6.45 -6.45 -6.45 -7.45 -7.45 -7.45	7.43 6.51 4.38 3.41 2.52 2.17 0.9 8.8 1.93 3.50 5.74 7.49 6.91 4.38 2.52 2.17 8.0	-1.71 -4.31 -5.68 -5.68 -6.60 -6.60 -6.54 -1.64 0.27 -1.71 -4.31 -5.60 -5.66 -6.56 -6.56 -6.56	-0.45 -0.45 -0.45 -0.45 -6.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	6. 91 7. 49 5. 74 4. 38 2. 52 2. 44 1. 39 1. 01 2. 63 6. 91 7. 49 5. 74 3. 41 2. 46 1. 09 1. 2. 63	-8.43 -3.16 -5.08 -5.01 -6.62 C.47 -8.62 C.47 -8.62 C.47 -9.43 -7.16 -5.00 -5.00 -6.60 -6.60 -6.60	
-3.45 -6.45 -7.45 -3.45 -3.45 -6.45 -6.45 -6.45 -6.45 -6.45 -7.45 -7.45 -7.45 -7.45	7.43 6.51 4.38 3.41 2.52 2.17 0.9 0.8 1.91 3.50 5.74 7.49 6.91 4.30 2.52 2.17 8.0	-1.71 -4.31 -5.66 -5.68 -6.60 -6.60 -6.50 -7.71 -4.31 -5.60 -5.66 -6.56 -6.56 -6.56	-0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	6. 91 7. 49 5. 74 4. 38 2. 52 2. 44 1. 39 1. 01 2. 63 4. 38 6. 91 7. 49 5. 74 3. 41 2. 46 1. 09 1. 21 2. 63 4. 42	-8.43 -3.16 -5.08 -5.01 -6.62 C.47 -9.43 -7.18 -5.00 -5.00 -6.60 -6.60 -6.60	
-3.45 -6.45 -7.45 -3.45 -3.45 -6.45 -6.45 -6.45 -6.45 -6.45 -7.45 -7.45 -7.45 -7.45 -7.45	7.43 6.51 4.38 3.41 2.52 2.17 0.9 0.8 1.92 3.50 5.74 7.49 6.91 4.38 2.52 2.17 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	-1.71 -4.31 -5.06 -5.68 -6.60 -6.60 -6.56 -6.50 -5.66 -5.66 -6.56 -6.56 -6.50 -6.50 -6.50 -6.50 -6.50	-0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	5. 91 7. 49 5. 74 9. 38 2. 52 2. 44 1. 19 1. 01 2. 63 4. 63 4. 62 6. 63	-8.43 -3.16 -5.08 -5.08 -6.01 -6.62 0.47 -9.43 -7.18 -5.00 -6.60 0.47 -6.60 0.47 -6.47 -6.47	
-3.45 -6.45 -7.45 -3.45 -9.45 -9.45 -6.45 -6.45 -6.45 -6.45 -7.45 -9.45 -1.15 -1.15	7-43 6-51 4-38 3-41 2-52 2-17 0-9 8-8 1-93 3-30 5-74 7-39 6-91 4-38 2-52 2-17 8-0 8-4 1-93 3-648 5-74	-1.71 -4.31 -5.16 -5.16 -5.16 -5.16 -6.60 -6.60 -6.7 -7.71 -4.31 -5.66 -6.56 -6.56 -6.50 3.54 3.39 0.39 0.39 0.39	-0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	5. 91 7. 49 5. 74 9. 38 2. 52 2. 44 1. 19 1. 01 2. 63 4. 12 2. 63 4. 63 7. 33	-8.43 -3.16 -5.08 -5.08 -6.62 -6.62 -6.62 -6.62 -7.43 -7.43 -7.43 -6.60 -6.60 -6.60 -6.60 -6.60 -6.60 -6.60 -6.60 -6.60 -6.60 -6.60 -6.60 -6.60	
-3.45 -6.45 -7.45 -3.45 -0.45 -0.45 -6.45 -6.45 -6.45 -6.45 -7.45 -1.15 1.1 1.1	7-43 6-51 4-38 3-41 2-52 2-17 0-9 4-8 1-9; 3-50 5-74 7-49 6-91 4-38 2-52 2-17 8-0 8-4 1-9; 3-648 5-7; 7-33 6-83	-1.71 -4.31 -5.16 -5.68 -6.60 -6.60 -6.50 -7.171 -4.31 -5.60 -5.66 -6.56 -6.50 -7.39 -7.39 -7.55 -4.11	-0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	5. 91 7. 49 5. 74 4. 38 2. 52 2. 44 1. 19 1. 01 2. 63 4. 30 1. 09 1. 21 2. 63 4. 62 6. A3 7. 33 5. 74	-8.43 -3.16 -5.08 -5.08 -6.01 -6.62 -6.62 -6.62 -7.43 -7.43 -7.43 -7.43 -6.60 -6.60 -6.60 -6.60 -6.60 -6.60 -6.60 -6.60 -6.60 -6.60 -6.60 -6.60	
-3.45 -6.45 -1.45 -3.45 -3.45 -6.45 -6.45 -6.45 -6.45 -6.45 -7.45 -1.15 1.1	7.43 6.51 4.38 3.41 2.52 2.17 0.9 8.8 1.93 3.50 5.74 7.49 6.91 4.38 2.52 2.17 8.0 8.0 1.93 3.648 5.74 7.33 6.83	-1.71 -4.31 -5.68 -5.68 -6.60 -6.60 -6.50 -7.1 -4.31 -5.60 -5.66 -6.56 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50	-0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	6. 91 7. 49 5. 74 4. 38 2. 52 2. 44 1. 19 1. 01 2. 43 4. 36 6. 91 7. 49 5. 74 3. 41 2. 46 1. 09 1. 21 2. 63 4. 62 6. 63 7. 33 5. 74 3. 41	-8.43 -3.16 -5.08 -5.01 -6.62 C.47 -6.62 C.47 -6.62 -7.43 -7.43 -7.43 -7.43 -6.60	
-3.45 -6.45 -7.45 -3.45 -3.45 -6.45 -6.45 -6.45 -6.45 -6.45 -1.15 1.1 1.1 1.1 1.1	7.43 6.51 4.38 3.41 2.52 2.17 0.9 8.8 1.93 3.50 5.74 7.49 6.91 4.38 2.52 2.17 8.0 8.4 1.93 3.648 5.74 7.33 6.83 4.82 2.52	-1.71 -4.31 -5.68 -5.68 -6.60 -6.60 -6.54 -7.71 -4.31 -5.60 -5.66 -6.56 -6.50	-0.45 -0	5. 91 7. 49 5. 74 4. 38 2. 52 2. 44 1. 39 1. 01 2. 63 6. 91 7. 49 5. 74 3. 41 2. 46 1. 89 1. 2. 63 4. 82 6. 63 7. 33 5. 74 3. 41 2. 44	-8.43 -3.16 -5.08 -5.01 -6.62 C.47 -6.62 C.47 -6.62 C.47 -6.62 C.47 -6.62 C.47 -6.63 -5.00 -5.00 -6.60	
-3.45 -6.45 -1.45 -3.45 -3.45 -6.45 -6.45 -6.45 -6.45 -6.45 -7.45 -1.15 1.1	7.43 6.51 4.38 3.41 2.52 2.17 0.9 8.8 1.93 3.50 5.74 7.49 6.91 4.38 2.52 2.17 8.0 8.0 1.93 3.648 5.74 7.33 6.83	-1.71 -4.31 -5.68 -5.68 -6.60 -6.60 -6.50 -7.1 -4.31 -5.60 -5.66 -6.56 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50	-0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45	6. 91 7. 49 5. 74 4. 38 2. 52 2. 44 1. 19 1. 01 2. 43 4. 36 6. 91 7. 49 5. 74 3. 41 2. 46 1. 09 1. 21 2. 63 4. 62 6. 63 7. 33 5. 74 3. 41	-8.43 -3.16 -5.08 -5.01 -6.62 C.47 -6.62 C.47 -6.62 -7.43 -7.43 -7.43 -7.43 -6.60	

ORIGINAL PAGE TO

	• 20	. 74	4 - 4 -	7 0-1		- FAIRING
	5.043	j. ÷ 1	1.16		6.30	
2. 51	1.93	5.44	2.31	3, 64,8	C4	
2. 51	>. :40	J. 51	2.01	6 15	C.360	
3.01	1.30	3.49	3.01	3, 643	0.49	
3.01	5 - 49		i.) i	6.415	i_4ú1	
4. Gü9	1.703	6.F11	4,145	3.648	6.488	
4.250	5.6-8	0. 469	4.356	6 15	0.451	
i-1i	6.415 -	3•č - -		5.98		_XAC_SIDEPR
1.16	7.33	-1.55	1.16	7.33	-2.37	
1.15	5.03	-4-11	1.1.	5.74	-4.89	
3.31	e ,252			6.235	6-416-	
2.68	7-15	-1.46 -3.67	2.35	.7.19 5.75	-2.65	
1.69 1.1	6.7-		1.10 1.1:		-4, 89	
1. 10	1.98	0.39				
3.40	i	9.56	3.45	C. 35	0.525	
3	1.93	C. 51				
b- 65	9-6	0.54	6.65	0.55	9.47	
o. 65	1.90	0.39				
10.55	_0.5		10.55	1,01	0.43	
19.55	1.90	0.0				
1.10	2.154	-0.247	1.16	2.52	-1.24	FUS BOT PR
	2-52	2 <u>, 56</u>		2.52	3.36	
1.18	2.52	-5.81 -6.56	1.10	2.44	-6. J1	
1-10 1-10	2-17 	-6. £6 6. 6B	1.10	1. 39	-6.60	
3. 4ú	2.275	-0.496	3.46	2.52	-1.67	
3. 40	2.52	-2.63	3.40	2.52	-4.00	
3.4:	2.52	5	3,46		-6.31	
3. +0	2.17	-6.56	3.+0	1. 39	-6.60	
3.40	G	-6. EQ				
£-65	2-190	9.367	6.6E	2.b0	=1.59	
b. 65	2.48	-2.75	6.65	2.46	-3.96	
6. 65	2-46	-4. 97	6.65	2. 37	-5.78	
6-65		6.32	6.65	1 <u></u>	=£ • 4.B	
6.65	0.0	-6.48	44 65		-4 04	•
10.55	1.93	9. C _2. 10	10.55 10.55	2.37 2.48	-1.01 -3.22	
10.55	2 2-41	-4.31	10.55	2.21	-5.35	
16.55	1.75	-5.94	10.55	1. 05	-6.13	
10.55		6-13				
12.55	6.8	3.50	16.55	1.01	0.43	FUS AFT
10-55	1-90	9.0	19.55	2.37	-1.01	
10-55	2+48	2	16.55	2.48	23.22_	
10.55	2.41	-4.31	10.55	2. 21	- 5.35	
16.55	1.75	-5.94	10.55	1.05	-6.13	
		6.13	46.6	- 40		
16.46 16.40	0.0 1.71	0.63 0.0	16.45 16.48	u. 69 2. 25	0.35 -0.70	
16.40	_2 <u>_2</u>	-1.55				
16.48	2.33	-3.30	16.4C	2.10	-4.15	
16.49	1.63	-4.65	16.4C	0.81	-F. 24	
16-66	ينمال	5 <u>32</u>				
24.10	6.0	0.23	24.10	g. 58	F•12	
24. 1.	1.13	-0.16	24.18	1. 59	-0.62	
24.10	1-50		24+10		<u>1.78</u>	
24.18	1 - 90	-2.41	24.10	1.59	-2. 95	
24.13	1-13	-3.41	24.10	0.58	-3.69	
31. 00	- 0	=3 <u>, ec</u> 0, 23	31.C	0.53	6.12	
31. CJ	1.13	-0.16	31.0	1.59	-6.65	
31.00	1.31	<u>-1.16</u>		1.58	-1.78_	
31.06	1.90	-2.41	31.0	1.59	-2.95	
31- G0	1.13	-3.41	31.0	0.50	-3.69	
31. OC	0.0	-3.60	•	-		

ORIGINAL PAGE 18 OF POOR QUALITY

-325	- 3.14	22 5 22				سالانة فسسسا
3.3275	5. u4	-2.39	3.1.75	5.93	-2.572 FNC N	CZZLE 00
2. E56	6.645	-3.364	1.984	r • 6~	-3.736	
1.312	6. 535	-4.468	J. 0 205	5.99	-4.9	
9.6435	5.0-	-5.38	3.6205	4.09	-4.9	
_0. 2205	_ 	~ * 4•9				 -
3.938	3, 14	-3.755	3. 935	4.09	-2,755	
4. 173	5. 6-	-3.056	3. 936	5.99	-3.755	
3.296	_ 6. 6.65	-=4.02	2.418	6.54	-+; <u>-385</u>	
1.54	6.665	-4.75	8. 693	5.93	-5. û15	
C • 653	5.04	-5.112	8+ 6 ýů	4.19	-5.015	
_ i • dib	_3.14	_ <u>=5.115</u>	5 21E		-5- 15	
4.215 4.47	3, 14	-5.15	4.215	4.03 E 00	-5.15	
	5.64	-5.15	4.215	5.99 6.9-	-5.15	
3.52	.6.6.P5	_=5 <u>•15</u> =5•15	.2.57 J.925	5.99	-5.15	
1.62	6.665	-5.15	8.925	4.33	-5.15	
0.67	5.04	-5.15	48 163	40.37	-7017	
<u> </u>	30 12500		3.52316	28.1253C	33363HING	PZ
6.84688		67679	7.44980		14231	-
5-05420				_ 20.12500 20.12500.		
	<u>20-1256</u> 1	<u>26</u> 436. 26853	4.7646C		25024	
5 . 40928 4 . 335 <i>2</i> 8		21856	4.01388		17928	
				20.1250u	10203	
3. 52976			3.47636		0.08068	
3.52570		. 66364	3.63710		-16203	
3-29626				_20.12500	1782&	
4. 33520		.21856	4.70480		. 25924	
5.4.920		. 26 85 3	6.0>360		. 25346	
			-Z-4498 G		414231	
6. 49426		. 67679	8.5238L	20.125	.03383	
8. 84600		.06113	9.11450		0.0000	
9. 39486		66123	8.72956		93827	
8.2-364	17.48469	Le685	7.5:476	17.48469	16096	
	17_48=#4	22351_	5.93552	17.43432	29669	
5. 2üt64	17.48469	36 37 J	4.47776	17.484.6	2à375	
3. 99184	17,48460	24721	3.62740	17. 48423	20166	
	17_48420	5975	3.25222	_17.48405	11541	
3. 68674	17.484û9	66864	3.02036	17.4848 î	0.00009	
3. Gál74	17.48483	.0686*	3.2:222		. 11541	
3.30400	<u>17~46464</u>	1597 <i>5</i> .	3.527 bc	17_48400	, 20166	
3. 99184	17.48408	•24721	4.47776	17.48400	. 28335	
5- 20664	17.484cd	. 3C 37 0	5.93552		• 5966 9	
0.78588		22081			16096	
e- 24364		. 68686	6.72956	17.48400	. 33627	
9- 09408		• 66 126	9.39770	17.48400	0.00000	
9.7 240				_17.~8663		
9 - 3 532C			8.94434		•. 34291	
8. 39946		(974)	7.50214		18649	
	14.71663					
4- 99296		36955	4-17664		31739	
3. 63176		27721	3.22310	14.71600	22613	
2,95,66					1 29=1 0.38.90	
2.61811		-, 07696 • 07696	2.5420 0 2.74633	14.7160) 14.716j.	•12 9 41	
2.61011 2.05666						
2.95666 3.63176		.27721	4a 17654	14.7163¢	- 31739	
3. 031/0 4. 99396		. 34355	5.81120	14-71600	.32148	
4. 77370 6.76482			7.5621b		016262	
d. 39946		. 89746	8.94434	14.71600	.04291	
9. 3530 0		.00143	9.69355	14.71603	6-30063	
	14.71688		_10.32.65		0.00000	
					T.44 ; & Management	

ORIGINAL PAGE IS OF POOR QUALITY

9.5.2:6	11.9-90:	(.159	9.1. 912	11. 34300	94755
0-5:529	11.993.3		7:049=2	11.0420	20732
6.74376	11.9-363	~ • ≧i ús Z	2 6 3 7 6 6	11. >	a = 6 27
	11.94.05			. 11.3433 1	
3.27108	11.9-9-0	3, 723	2.01836	11. 3430 €	25059
2.5168 6	11.9-9-3	19051	2.27064	::. 94363	14341
é• ‡ 3 5~6	11.94946	-• [e52]	2.364.5	11.9.90	i • E-vu?
2. 13948	11.94300	. úŧ529	2.2:544	11.3-311	. 14341
2_51608	-11-3-364	19351	-2-310-2	_11.34911	2£153
3. 27 16 E	11.34900	.30721	3.67552	11. 34300	.3517-
78128	11.9.9.3	. 477.9	5.307.4		.35527
t. 7+276				- 11-5-30:	
8. 55526	11.54980	. 16794	9.15-12	11. 493	.14755
9.61250	11.9.900	.00159	5. 505.3	11.94766	6.3000
_10_36634_	_11.349i1_	&• CC 33A _	_12.74424.	1. 34 3 3	. c.ascas
9. 67 158	9. 132C3	00174	9.37370	3. 16200	45220
8.71116	9.13263	1154 <i>j</i>	7.71690	9.14256	21955
6.72270					39105
4-56660	5. 10 200	41425	3.57440	9. 16263	386.28
2. 9116G	9.10269	33721	2.41.50	9. 18230	27506
2_08310_	9-18260_			<u> </u>	
1.66665	9-18200	-• 69362	1.50600	9.1823.	C- 9696
1. £6665	9. 10233	. 35352	1.83455	9.18268	. 15742
2.6031L_	9-18269	21731_	_2042454_	9-18235	275c6
2. 91 16¢	9.13260	.33720	3.57440	9. 18200	.38608
4. 56t6£	9.10263	. 41425	5.56240	9-1829 1	.39105
6.7227A_	9_13200_		7.716.90		
6.71110	9.18260	.11848	9.37390	9. 10253	• 35229
	9.16288				
9. 87 100		. G0174	10.26525	9. 18233	5.05030
- · 1C-69958	9-1623 0		_11+i::75_		
16.13000	615 03	GG 189	9.56858	61500	35684
8. 86E9Z	6.41560	12901	7.7ċ428	6. 41537	23968
6-74164	61504_	3428#_	5 , ,3 ,56_	6.415J£	
4-35592	6.41563	45113	3.27326	6-41500	42943
2. 55 152	6.41500	36728	2.01529	6- +1583	29953
-1.64532	_6.a15::-	23728_	1.37266	6-153-	17: 62
1.19622	6.41500	15195	1.108 05	6. +1520	6.00330
1.19c22	6.41503	. 10195	1.37866	6. 41500	. 17142
1.64932	_0041569_	23726_	_2.51_2i_		29953
2.55152	6.41503	.36723	3.27328	6. 415G 8	. 42043
4.35592	6.41503	.45110	5.43856	6. →15C C	.42564
6_71164_	6.41500_	34294_	7.Z.42A_	6-41531	
8. 86692	6.41553	.12931	9.58868	6. +150 :	. 25684
16. 13600	6.41500	.66199	16.58110	6. 41583	G. 00000
11.03226	0.415			<u> </u>	<u>Calledică</u>
10.2960 0	5. j4288	BG 197	9.69472	5.04000	05914
8. 94368	5.84000	13425	7.61712	5. 4.000	24878
6_69856_		35674	5.37£24	5-5438 3	44311
4. 2.968	5.04360	4E94J	3.12312	5. [48. C	43748
2. 37 20 8	5-0-200	36299	1.80080	5. C4803	3116è
1.63328	5-0-000	24691_	_1.15164_	5.04000	17837
. 96388	5.24380	1698	. 67 000	5. 04 0C 0	C. 200J0
. 96388	5.04000	-10638	1.15164	5.84889	.17837
1_A3328_					
	5 <u>_06000</u> _	24691	1.53850_	<u> </u>	31168
2. 37 20 8	5.04000	.38299	3.12312	5.04805	. 43748
4-24968	5-44000	• LE 94 D	5.37624	5.04900	•44311
6.69156_	5-0-000	3562*_	7.81712	<u> </u>	
8.94366	54][]	• 13425	9.69472	5- 7400 -	. 05914
10.25£4 0	5.04000	. 68197	10.72740	5. 34382	0.09300
11-1968Q	5.04.000_	0+06000_	_11.6:628_	5.64160_	0.0000
12.36900	3.64880	60235	9.83346	3. 6 489 0	06148
9. 02274	3.64880	13955	7.85166	3.6400 .	25861
6.64634	3.6.444	22004_	_5431632	3.66853	6362
4. 14324	3.6-800	46795	2.97216	3.64803	45477
2. 19144	3.64840	39719	1.6.590	3. 6483 1	32433
1,21554	3_65672_	25666_	92277	3_64823_	18542
					0.0000
.72759	3.64500	11028		3-64866	
.72759	3.64860	. 11025	.92277	3.64800	. 18542
1.21554	3.64800	• 25666	1.65590	3.64600	.32400

ORIGINAL PAGE 19 OF POOR QUALITY

	sate sud.		L.9/216		×557Z	
4. 14324	3.6-80;	.48795	5.31-14	3, 64493	. 46052	
6.60058	3.04323	.379.4	7.35106		. 25861	
9.32274		.13985	5.A (3.6	3.64893	.051.4	
	3,0-343					
16.30930	3.64863	. 00245	10.17695	3.34300	6.00340	•
11.3£43Q	3•ë•2Cu	0122	-11.6:255		i.25618	
16.552	1.90	 6621€	9.935?	1. 3435	-6.2043	•
3. 11.9	4.6.5.	-0.1-53	7.8:91	2. 1931	< 6>5	
		* * E		2 2522		
	2.1539					
4. 0378	2.2772	5:62	3222 ئ	2.2703	-0.4716	
2,0345	2.2.56	-0.4124	1.3:22	2.1947	-(.3368	
ــــــــــــــــــــــــــــــــــــــ	2a 15 J1	-0.2671	0.6±73 _	2.CA		
3. 4541	2.0	-0.1151	6-32630	1. 9000	9.3	
	1.93300	. 11553	.93472	1.36303	.13426	
. +3524						
				1-3003.1		
1.96384	1.90000	.41612	2.7:176	1,9000 :	.47664	•
4. G £ £ 64	1. 30 009	.51123	5.23552	1. 9 330 3	. 46257	•
t. 5££38.	1.90664	A38451	Z_4937£	_ legale 2	27 . 34	
9.12664	1.90000	. 14623	9.97856		.06441	
				•		
10.55200	1.95000	. 66215	11.06320	1.90023	6.00000	
11.57hul		u _Li.J÷3.			c• 30cco	
12.73600	0.00030	00225	18.36629	0.00003	36750	i
9-22780	6.63600	15344	7.94020	0. 000Ca	20435	•
6. £5264	C.SG000	45774				
			2.57520			
3.66280	C.63003	53651		6.83863	50002	
1.716ā@	5.(3860	43671	1.07300	9.0000	37624	
64360	<u> — DaŭB</u> b 3 d		3£1.3&	ــــنامئنـالاحـــ	2^23.7	<u></u>
.1073C	0.00000	12125	0.00000	0. 59863	2, 30030	1
.10730	E-00000	. 12125	.32190	0.02095	. 26387	•
64360		ZE 22 1			35624	
	0.00000					
1.71680		. 43671	2.57526	6.30763	.50902	
3.86286	0.35066	• 53650	5.15040	C. 26302	.50646	
6526C	0.00060	1.077				
			7 <u>~9</u> _020_	0.0030 -	28435	
9. 22786	u.()34.	.1:344	10.3ce20		. J676ú	
9. 22786	0.()346	. 15344	10.3cE2C	n. 6 876 9	. Jó76ú	
9.22786 10.73018	0.03000 0.03000	• 15 344 • 68 22 5	10.3c620 11.26659	0.0000 0.05900	. J676ú . G. 0000	i F
9.22786 10.73038 11.80300	0.0300 0.0300 0.6303C	• 15 34 4 • 68 22 5 • • • • • • • • • • • • • • • • • • •	10.0c620 11.26650 	0.0000 0.0000 c.0000	. 3676ú . 00000 . 00000	
9.22786 10.7308 11.80300 -5.46	0.03046 0.03006 0.03036 3.45	•15344 •66225 •66000 •1•2	10.0c620 11.26650 12.33936 -5.65	0.0000 0.0000 0.35003 3.2	. J676ú . G. OUOOO . C. JUGCS -1. 5	i F
9.22786 10.7308 11.80308 -5.45 -5.85	0.0300 0.0300 0.63036 3.45 2.88	•15344 •68225 •68225 •1•2 •1•2 •2•35	10.0ce20 11.26650 12.33936 -5.65 -5.65	0.0000 0.0000 0.0000 3.2 2.88	.36764 .G.00000 .C.36666 -1.5 -3.15	
9.22786 10.73038 11.80308 -5.45 -5.85	0.01000 0.01000 3.45 2.88 3.23	.1:344 .60225 -0.6088 -1.2 -2.35	10.0ce20 11.26650 12.33956 -5.65 -5.85	0.0000 0.0000 0.1000 3.2 2.88 3.47	.J676u .G.00000 .G.00000 -1.5 -3.15	
9.22786 10.7308 11.80308 -5.45 -5.85	0.0300 0.0300 0.63036 3.45 2.88	•15344 •68225 •68225 •1•2 •1•2 •2•35	10.0ce20 11.26650 12.33936 -5.65 -5.65	0.0000 0.0000 0.0000 3.2 2.88	.36760 .G.00000 .C.36666 -1.5 -3.15	
9.22786 10.73038 11.80308 -5.45 -5.85	0.01000 0.01000 3.45 2.88 3.23	.1:344 .60225 -0.6088 -1.2 -2.35	10.0ce20 11.26650 12.33956 -5.65 -5.85	0.0000 0.0000 0.1000 3.2 2.88 3.47	.J676u .G.00000 .G.00000 -1.5 -3.15	
9. 22786 10.73030 -5.45 -5.65 -5.65 -5.65	0.01000 0.01000 0.01000 3.45 2.88 3.23 3.75 3.75	.15344 .00225 .0.0:000 -1.2 -2.35 -4.92 +2.35	10.1c620 11.26650 12.33936 -5.65 -5.65 -5.85 -5.85 -5.85	0.00100 0.00900 0.16000 3.2 2.88 3.47 3.75 3.75	. J676u 6.00000 c. Júscs -1.5 -3.15 -4.3 -1.5 -3.15	
9. 22786 10.73030 11.80300 -5.85 -5.85 -5.85 -5.85 -5.85	0.03000 0.03000 3.45 2.00 3.23 3.75 3.75 3.75	.15344 .65225 .0.6:003 -1.2 -2.35 -4.92 -2.35	10.1ct 20 11.26550 12.33936 -5.65 -5.65 -6.85 -5.65 -5.65 -5.65	0.0000 0.0000 0.0000 3.2 2.00 3.47 3.75 3.75 3.75	. Jó76u 6. 00000 c. Jü666 -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 5	
9. 22786 10.73030 11.80300 -5.45 -5.85 -5.85 -5.85 -5.85 -5.85	0.03000 0.03000 0.03000 3.45 2.00 3.23 3.75 3.75 3.75	.15344 .65225 .0.6:003 -1.2 -2.35 -4.92 -2.35 -4.1 -0.56	10.1ct 20 11.26650 12.33936 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.2 2.00 3.47 3.75 3.75 3.75	. Jó76u 6,0000 1. Júscs -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 52 -1. 5	
9. 22786 10.73030 11.80300 -5. 45 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85	0.03000 0.03000 0.03000 3.45 2.88 3.75 3.75 3.75 3.25	.15344 .60225 0.60007 -1.2 -2.35 -4.92 -2.35 -4.1 -0.58 -2.35	10.1ct 20 11.26550 12.33936 -5.65 -5.65 -5.65 -5.65 -5.65 -5.65 -5.65	0.0000 0.0000 3.0000 3.2 2.000 3.47 3.75 3.75 3.75 4.6	. Jó76u 6.00000 c. Jüggg -1.5 -3.15 -4.3 -1.5 -3.15 -4.52 -1.5 -3.15	
9. 22756 10.73030 11.80300 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85	3.45 2.03 2.05 3.45 2.08 3.23 3.75 3.75 3.75 4.6	.1:34	10.10620 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0	. J676u G. 00000 	
9. 22786 10.73030 11.80300 -5. 45 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85	0.03000 0.03000 0.03000 3.45 2.88 3.75 3.75 3.75 3.25	.15344 .60225 0.60007 -1.2 -2.35 -4.92 -2.35 -4.1 -0.58 -2.35	10.1ct 20 11.26550 12.33936 -5.65 -5.65 -5.65 -5.65 -5.65 -5.65 -5.65	0.0000 0.0000 3.0000 3.2 2.000 3.47 3.75 3.75 3.75 4.6	. Jó76u 6.00000 c. Jüggg -1.5 -3.15 -4.3 -1.5 -3.15 -4.52 -1.5 -3.15	
9. 22756 10.73030 11.80300 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85	3.45 2.03 2.05 3.45 2.08 3.23 3.75 3.75 3.75 4.6	.1:34	10.10620 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0	. J676u G. 00000 	
9. 22786 10.73030 -5.45 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	3. () 14. () 0. () 18.	.15344 .65225 -1.2 -2.35 -61.92 -2.35 -4.1 -0.58 -2.35 -4.1 -0.58 -2.35	10.1ce 20 11.26659 12.33956 -5.65 -5.65 -5.65 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 4.6000 4.6000 5.4000 6.4000	. Jó76u G. QUQQQ C. JüGCS -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 52 +1. 5 -3. 15 -4. 35 -1. 5 -3. 15	
9. 22786 10.73030 -5.45 -5.65 -5.65 -5.65 -5.65 -5.65 -5.65 -5.65 -5.65 -5.65 -5.65 -5.65 -5.65	0.03000 0.03000 3.45 2.48 3.23 3.75 3.75 3.75 4.6 4.6 4.6	. 15 34 4 . 65 22 5 	10.1ct 20 11.26550 12.33936 -5.65 -5.65 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.2 2.08 3.47 3.75 3.75 3.75 3.75 4.6 4.6 5.4 5.4	. Jó76u 6.0000 c. Jü6cs -1.5 -3.15 -4.3 -1.5 -3.15 -4.52 -1.5 -3.15 -4.52 -1.5 -3.15 -4.65 -3.15	
9. 22786 10.73030 -5. 45 -5. 45 -5. 65 -5. 65 -5. 65 -5. 65 -5. 65 -5. 65 -5. 65 -5. 65 -5. 65 -5. 65 -5. 65	0.03000 0.03000 3.45 2.00 3.75 3.75 3.75 4.6 4.6 4.6 5.4 5.4	.14344 .65225 .0.6:000 -1.2 -2.35 .6. -0.92 -2.35 -4.0 -0.56 -2.35 .6.0 -0.58 -2.35 -4.0 -0.58	10.10620 11.26650 12.33936 -5.65 -5.65 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	U. 00000 J. 05903 S. 16003 3. 2 2.08 3.47 3.75 3.75 3.75 4.6 4.6 4.6 4.6 4.6 4.6	. Jó76u 6.0000 c. Júccs -1.5 -3.15 -4.3 -1.5 -3.15 -4.52 -1.5 -3.15 -4.65 -3.5 -4.65 -3.5	
9. 22786 10.73030 11.80300 -5. 85 -5. 85	3. (1) 14.0 0. 00 10 00 0. 60 00 00 3. 45 2. 08 3. 75 3. 75 3. 75 3. 75 3. 75 4. 6 4. 6 5. 4 5. 4 5. 4 5. 4 5. 4	.1:34- .00225 -1.000 -1.2 -2.35 -1.92 -2.35 -1.0 -0.52 -2.35 -1.0 -0.58 -2.35 -1.0 -0.58 -2.35 -1.0 -0.58	10.0cc20 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.05903 5.15003 3.2 2.88 3.47 3.75 3.75 3.75 3.75 4.6 4.6 5.4 5.4 6.25 6.25	. Jó76u G. 00000	
9. 22786 10.73030 11.80300 -5. 45 -5. 45 -5. 45 -5. 45 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85	3. (1) 14.0 0. 01) 0 06 0. (20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 14 34 4	10.10620 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.05903 5.15003 3.2 2.88 3.47 3.75 3.75 3.25 4.6 4.6 5.4 5.4 5.4 6.25 6.25	. Jó76u G. 00000 C. 106CG -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 5 -3. 15 -4. 65 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15	
9. 22786 10.73030 11.80300 -5. 85 -5. 85	3. (1) 14.0 0. 00 10 00 0. 60 00 00 3. 45 2. 08 3. 75 3. 75 3. 75 3. 75 3. 75 4. 6 4. 6 5. 4 5. 4 5. 4 5. 4 5. 4	.1:34- .00225 -1.000 -1.2 -2.35 -1.92 -2.35 -1.0 -0.52 -2.35 -1.0 -0.58 -2.35 -1.0 -0.58 -2.35 -1.0 -0.58	10.0cc20 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.05903 5.15003 3.2 2.88 3.47 3.75 3.75 3.75 3.75 4.6 4.6 5.4 5.4 6.25 6.25	. Jó76u G. 00000	
9. 22786 10.73030 11.80300 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85	3. (1) 14.0 0. 01) 0 06 0. (20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 14 34 4	10.10620 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 5.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0	. Jó76u G. 00000 C. JüGCS -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15	
9. 22786 10.73030 11.A0300 -5. 45 -5. 45 -5. 45 -5. 45 -5. 45 -5. 45 -5. 45 -5. 45 -5. 45 -5. 45 -5. 45 -5. 45 -5. 45 -5. 45 -5. 45 -5. 45 -5. 45 -5. 45 -5. 45	3. (1) 14.0 0. 01) 0 06 0. (20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.1434- .00225 .0.1000 -1.2 -2.35 .6. -0.92 -2.35 .6.0 -0.56 -2.35 .6.0 -0.58 -2.35 .6.0 -1.2	10.10620 11.26650 12.33936 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 5.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0	. Jó76u G. 00000 C. 106CG -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 5 -3. 15 -4. 65 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5	
9. 22786 10.73030 -5. 45 -5. 45 -5. 65	3. (1) 14. (1) 14. (2) 13. (2)	.1434+ .65225 -1.2 -2.35 -1.92 -2.35 -4.1 -0.52 -2.35 -4.1 -0.58 -2.35 -4.1 -0.58 -2.35 -4.1 -0.58	10.1ct 20 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 5.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0	. Jó76u G. 00000 C. JüGCS -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15	
9. 22786 10.73030 11.80300 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85 -5. 85	3. (1) 14. (1) 14. (2) 13. (2)	.1434+ .65225 -1.2 -2.35 -h1.92 -2.35 -h1.92 -2.35 -4.1 -0.58 -2.35 -4.1 -0.58 -2.35 -4.1 -1.2 -2.35	10.1ct 20 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 5.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0	. Jó76u G. 00000 C. JüGCS -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15	
9. 22786 10.73 030 11.80300 -5. 85	3. (1) 14. (1) 14. (2) 13. (2)	.1434+ .65225 -1.2 -2.35 -h1.92 -2.35 -h1.92 -2.35 -4.1 -0.58 -2.35 -4.1 -0.58 -2.35 -4.1 -1.2 -2.35	10.1ct 20 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 5.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0	. Jó76u G. 00000 C. JüGCS -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15	
9. 22786 10.73030 -11.A0300 -5. 45 -5	3. (1) 14. (1) 14. (2) 13. (2)	.1434+ .65225 -1.2 -2.35 -h1.92 -2.35 -h1.92 -2.35 -4.1 -0.58 -2.35 -4.1 -0.58 -2.35 -4.1 -1.2 -2.35	10.1ct 20 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 5.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0	. Jó76u G. 00000 C. JüGCS -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15	
9. 22786 10.73030 -5. 45 -5. 45 -5. 45 -5. 65	3. (1) 14. (1) 14. (2) 13. (2)	.1434+ .65225 -1.2 -2.35 -h1.92 -2.35 -h1.92 -2.35 -4.1 -0.58 -2.35 -4.1 -0.58 -2.35 -4.1 -1.2 -2.35	10.1ct 20 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 5.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0	. Jó76u G. 00000 C. JüGCS -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 52 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15	
9. 22786 10.73030 -11.A0300 -5. 45 -5	3. (1) 14. (1) 14. (2) 13. (2)	.1434+ .65225 -1.2 -2.35 -h1.92 -2.35 -h1.92 -2.35 -4.1 -0.58 -2.35 -4.1 -0.58 -2.35 -4.1 -1.2 -2.35	10.1ct 20 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 5.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0	. Jó76u G. 00000 C. JüGCS -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 52 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15	
9. 22786 10.73030 -5. 45 -5. 45 -5. 45 -5. 65	3. (1) 14. (1) 14. (2) 13. (2)	.1434+ .65225 -1.2 -2.35 -h1.92 -2.35 -h1.92 -2.35 -4.1 -0.58 -2.35 -4.1 -0.58 -2.35 -4.1 -1.2 -2.35	10.1ct 20 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 5.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0	. Jó76u G. 00000 C. JüGCS -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 52 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15	
9. 22786 10.73030 -5.45 -5.45 -5.65	3. (1) 14. (1) 14. (2) 13. (2)	.1434+ .65225 -1.2 -2.35 -h1.92 -2.35 -h1.92 -2.35 -4.1 -0.58 -2.35 -4.1 -0.58 -2.35 -4.1 -1.2 -2.35	10.1ct 20 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 5.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0	. Jó76u G. 00000 C. JüGCS -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 52 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15	
9. 22786 10.73 030 11.80300 -5. 85	3. (1) 14. (1) 14. (2) 13. (2)	.1434+ .65225 -1.2 -2.35 -h1.92 -2.35 -h1.92 -2.35 -4.1 -0.58 -2.35 -4.1 -0.58 -2.35 -4.1 -1.2 -2.35	10.1ct 20 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 5.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0	. Jó76u G. 00000 C. JüGCS -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 52 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15	
9. 22786 10.73 030 11.80300 -5. 45 -5	3. (1) 14. (1) 14. (2) 13. (2)	.1434+ .65225 -1.2 -2.35 -h1.92 -2.35 -h1.92 -2.35 -4.1 -0.58 -2.35 -4.1 -0.58 -2.35 -4.1 -1.2 -2.35	10.1ct 20 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 5.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0	. Jó76u G. 00000 C. JüGCS -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 52 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15	
9. 22786 10.73 030 11.A0300 -5. 45 -5	3. (1) 14. (1) 14. (2) 13. (2)	.1434+ .65225 -1.2 -2.35 -h1.92 -2.35 -h1.92 -2.35 -4.1 -0.58 -2.35 -4.1 -0.58 -2.35 -4.1 -1.2 -2.35	10.1ct 20 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 5.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0	. Jó76u G. 00000 C. JüGCS -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 52 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15	
9. 22786 10.73 030 11.80300 -5. 45 -5	3. (1) 14. (1) 14. (2) 13. (2)	.1434+ .65225 -1.2 -2.35 -h1.92 -2.35 -h1.92 -2.35 -4.1 -0.58 -2.35 -4.1 -0.58 -2.35 -4.1 -1.2 -2.35	10.1ct 20 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 5.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0	. Jó76u G. 00000 C. JüGCS -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 52 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15	
9. 22786 10.73 030 11.A0300 -5. 45 -5	3. (1) 14. (1) 14. (2) 13. (2)	.1434+ .65225 -1.2 -2.35 -h1.92 -2.35 -h1.92 -2.35 -4.1 -0.58 -2.35 -4.1 -0.58 -2.35 -4.1 -1.2 -2.35	10.1ct 20 11.26650 12.33956 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85 -5.85	0.0000 0.0000 0.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 5.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0	. Jó76u G. 00000 C. JüGCS -1. 5 -3. 15 -4. 3 -1. 5 -3. 15 -4. 52 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15 -4. 85 -1. 5 -3. 15	

5.0 References

4-1	Mineck, R.E.; and Schwendemann, M.F.; "Aerodynamic Characteristics of a Vectored-Thrust V/STOL Fighter in the Transition Speed Range." NASA Tnd-7191 (May 1973)
5-1	Stockman, N. D.; and Button, S. L.; "Computer Program For Calculating Potential Flow In Propulsion System Inlets," NASA TMX-68278, 1973
5-2	Ziegler, H; and Wooler, P. T.: "Analysis of Stratified and Closely Spaced Jets Exhaustiung Into a Crossflow," NASA CR-132297, 1973.

6.0 VAPE SUBROUTINES

The VAPE program system contains over 190 subroutines. These subroutines can be divided into seven primary areas as shown below:

- o VAPE Main System
 o Hess Lifting Program
- o Viscous Module o Inlet Analysis
- o Vought/Weston Jet Model
- o Wooler Jet Model
- o Thames Rectangular Jet Model

The subroutines assigned to the VAPE main system are general routines, i.e., read and write routines which are used throughout the VAPE system. In Section 6.1, a complete listing of all subroutines, the main area the routine is associated with, and a short explanation of the purpose of the subroutine is supplied. In Section 6.2, a series of flow charts are given showing the relationship of the various subroutines.

6.1 SUBROUTINE DESCRIPTION

All of the subroutines contained in the VAPE system are listed on the following pages in alphabetical order. The main system component that the routine is associated with is given along with a short explanation of the subroutine.

SUBROUTINE	MAIN SYSTEM COMPONENT	DESCRIPTION
ADAMS	Wooler Jet Model	Solves a system of N order differential equations by means of a fourth order ADAMS predictor/corrector method.
AFGRM	Hess Lifting Program	Performs the DOT product of the source velocities and/or onset velocities at each control point with the normal vector at that point forms the A(I, J) matrix.
AREAA	Inlet Analysis	Calculates the circular area between SHROUD and HUB.
AVEV	Inlet Analysis	Primary calculation routine in subroutine COMBYN. Calculates areas and velocities.
AXISA	Inlet Analysis	Compute axisymmetric velocity components VX, VY, VT, CP.
BALANC	Wooler Jet Method	Establishes initial conditions for merged jet from momentum balance of 2 merging jets.

SUBROUT INE	MAIN SYSTEM COMPONENT	DESCRIPTION
BALNCW	Vought/Weston Jet Method	Establishes initial conditions for merged jet from momentum balance of 2 merging jets.
BASIC 1	Inlet Analysis	Reads in input data and does initial program calculations for uniform flow.
BASIC 2	Inlet Analysis	Read in input data and es initial program calculations for non-uniform flow.
BITEST	Wooler Jet Model	Tests for blockage of 2nd jet by 1st jet and checks for inter section of the two jets.
BOUNDL	Viscous Module	Main program for Cebeci-Smith boundary layer code used in viscous solution.
B SETUP	Viscous Module	Reads in boundary layer input data and transforms Hess output data to boundary layer input requirements for Cebeci-Sm th code.
BUFSHR	VAPE	System routine to allow buffer sharing.
CALCRS	Viscous Module	Computes elements of a new right hand side for Hess from the boundary layer displacements and velocities.
CALVEL	Vought/Westor Pet Model	Calls routines to calculate induced velocities.
CDELTA	Vought/Wescon Jet Model	Calculates trigonometric values of jet injection angle.
CFCAL	Wooler Jet Model	Computes direction cosines of local jet coordinate system.
CFCAL 1	Wooler Jet Model	Computes directional cosines at local jet coordinate system.
COLSOL	Hess Lifting Program	Matrix solution routine.
COMBYN	Inlet Analysis	Main control routine to calculate velocities for inlet analysis routine with viscous effects.
COMFLOW	Hess Lifting Program	Routine to control velocity solution after matrix is solved.

SUBROUT INE	MAIN SYSTEM COMPONENT	DESCRIPTION
CCMP	Wooler Jet Model	Computes Y/Y effective and tests for intersection of centerlines.
CONST	Inlet Analysis	Calculates constants used in subroutine COMBYN
COTR	Inlet Analysis	Reads in all input data for viscous routine.
CROSS	Inlet Analysis	Computes cross flow velocity components.
CRPROD	Vought/Weston and Rectangular Jet Method	Calculates cross product of two vectors.
CUBIC	Inlet Analysis	Fits a cubic between 2 straight lines.
CORVEM	Weston Jet Model	Forms jet or vortex curves.
DBCCDU	Inlet Analysis	Computes the double integral of a table using splines.
DBCQDU	Wooler Jet Method	Integration of F(X) from A to B using cautious adaptive romberg extrapolation.
DCOSJ	Weston Jet Model and Rectangular Jet Model	Computes direction cosines of local coordinate system.
DCGSJI	Rectangular Jet Model	Computes direction cosines of jet deflection (routine identical to DCOSJ).
DCSQDU	Inlet Analysis	Integrates a cubic spline between A and B.
DERIV	Mooler Jet Model	Computes derivatives for ADAMS predictor 1 corrector method.
DIRCOS	Vought/Weston Jet Model	Computes direction cosines between 2 points.
EDVS	Viscous Module	Calculates eddy viscosity for CEBECI-SMITH boundary layer method.
EINF	Viscous Module	Calculates transformed Y-grid points for Cebeci-Smith boundary layer method.
ELIP	Inlet Analysis	Hastings approximation for elliptic integrals.

SUBROUT INE	PAIN SYSTEM COMPONENT	DESCRIPTION
ENGY	Viscous Nodule	Calculates solution to energy equation for Cebeci-Smith boundary layer method.
EOD	Inlet Analysis	Hess axisymmetric potential flow main control program.
ERF	Weston Jet Model	Error function calculation routine.
EXCROS	Inlet Analysis	Compute extra cross flow velocities for axisymmetric potential flow.
FILE	Inlet Analysis	Lists the momentum and energy profiles on Y and the wall station parameters at specified X stations.
FINDYS	Inlet Analysis	Finds value of Y for hub and s: oud at rake location - (Determines min. and max. height at rake).
FIX	Wooler Jet Model	Limits mutually induced velocities to a maximum valve.
FLP2	Viscous Module	Determines fluid properties for Cebeci-Smith boundary layer code.
FNCAR	Inlet Analysis	Control program for force and moment calculations.
FMCMOM	Inlet Analysis	Compute moment force on internal surface.
FMDATN	Inlet Analysis	Reads data and initializes calculation.
FNFLUX	Inlet Analysis	Computes momentum flux.
FMINP	Inlet Analysis	Reads data for force and moment calculations.
FMINT	Inlet Analysis	Compute inside P-A integral in X direction.
FMOUT	Inlet Analysis	Output routine for force and moment calculations.
FNSTRH	Inlet Analysis	Find straight segment on hub and shroud.
FONISO	Inlet Analysis	Find N for the supercircle $F(N) = (X/a)^n + (Y/B)^{n-1}$

SUBROUT INE	MAIN SYSTEM COMPONENT	DESCRIPTION
FORMOM	Inlet Analysis	Main control program for force and moment calculation.
FRSTSH	Inlet Analysis	Find first straight segment on shroud.
GEOMOD	Inlet Analysis	Modifies inlet geometry to account for boundary layer displacement thickness.
GETABC	Inlet Analysis	Computes V1, V2, V3 and A, B, C from input parameters.
GETMT	Inlet Analysis	Opens files.
GROUNDH	Inlet Analysis	Calculates ground height.
HEADK	Viscous Module	Prints header on each page of Cebeci-Smith boundary layer output.
HESS	Hess Lifting Program	Main control program for Hess.
HINIT	Hess Lifting Program	Reads all imput data for Hess, including jet data. Lists it out and transfers it to Unit 14.
ICSEVU	Inlet Analysis	Evaluation of a cubic spline.
ICSICI	Inlet Analysis	Interpolatory approximation by cubic splines with arbitrary second derivative end conditions.
ICSSU	Inlet Analysis	Cubic spline data smoothing.
INBLOCK	Weston Jet Model	Determination of equivalent velocity due to jet blockage at 2nd jet exit.
INCRMT	Rectangular Jet Model	Calculates increment length for jet curves.
INDEX	Inlet Analysis	A functional subroutine which compares or tabular function X with a functional Z to find the index of X such that X is the least tabular value of X greater than Z.
INIR	Inlet Analysis	Determines initial conditions for boundary layer calculations.
INI TRIT	VAPE	Initial routine in VAPE - sets program control papameters

SUBROUT INE	MAIN SYSTEM COMPONENT	DESCRIPTION
INLIRT	Hess Lifting Program	Finds inlet CP's by interpolation.
INPUT	Hess Lifting Program	Reads data from Unit 14 for Hess 3-D potential flow routine.
INPUTW	Yought/Weston Jet Model	Reads input data for Weston routine. Also etermines jet spacing in terms of jet diameters.
INP2	Viscous Module	Processes all input to the Cebeci-Smith boundary layer code.
INS2	Viscous Module	Linear or quadratic interpolation routine.
INTEG	Inlet Analysis	Integrates sum by trapezoidal rule.
INTEGA	Wooler Jet Model	Integration of the equations of motion for the jet path.
INTPOL	Inlet Analysis	Interpolation and differentiation.
INTSEC	Yought/Weston Jet Model	Determines if merging of jets occurs and what direction cosines of jets 1 and 2 are at merging point.
ITFR	Inlet Analysis	Generates new initial FP and GP profiles for viscous solution.
ITSR	Inlet Analysis	Main subroutine for computation of momentum and energy profiles.
1TS2	Yiscous Module	Integration routine in Cebeci-Smith boundary layer code.
IVPF	Viscous Module	Generates initial velocity profile for Cebeci-Smith boundary layer solution.
JDRCOS	Vought/Weston Jet Model	Calculates direction cosines of freestream and jets.
JETCET	Vought/Weston Jet Model	Calculates jet centerline location.
JETCT2	Yought/Weston Jet Model	Jet centerline location for wake effects.
JETOLD	Wooler Jet Model	This routine reads jet induced velocities computed in an earlier run.
JET 3	Wooler Jet Model	Main program for Wooler jet code.

SUBROUTINE	MAIN SYSTEM COMPONENT	DESCRIPTION
JET3IN	Wooler Jet Model	Input routine and parameter initilization for Wooler jet code.
JET3IT	Wooler Jet Model	Does initial calculations, including jet blockage and intersectional.
JET3ZZ	Wooler Jet Model	Calculates jet induced velocities.
LEM	Inlet Analysis	Calculates points on a lemiscate.
LIFT	Hess Lifting Program	Calculates geometric quantities for elements in the lifting section.
L INTP3	Rectangular Jet Model	Lineary interpolation of 3 independent variables.
LSEP	Viscous Module	Determines when a laminar separation point, as predicted, will be a transition location or an actual separation point.
LST INP	VAPE	Lists all input cards.
MATRIX	Inlet Analysis	Computes matrix for potential flow solution.
MATSOL	Hess Lifting Program	Controls matrix solution routine (1) Colsol-Basic matrix solution, (2) Solmor-Solve for additional right hand sides with same matrix.
MERJET	Vought/Weston Jet Model	Determines jet centerline of merged jets.
MIRROR	Inlet Analysis	Mirrors the hub to obtain points on shroud (2-D inlets)
MI SNA2	Inlet Analysis	Matrix solution-Siedel integration method.
MISI	Inlet Analysis	Matrix solution-direct inverse method.
MODIFY	Wooler Jet Model	Computes mutually induced velocities between jets.
MOMX	Viscous Module	Finds solution of X-momentum equation in Cebeci-Smith boundary layer code.
MOMZ	Viscous Module	Finds solution of Z-momentum equation in Cebeci-Smith boundary layer code.

SUBROUT INE	MAIN SYSTEM COMPONENT	DESCRIPTION
MUINT	Hooler Jet Model	Computes direction cosines of modified freestream and modified freestream velocity ratio.
NDIR	Inlet Analysis	Print boundary layer results summarized.
NE AR	Hess Lifting Program	Calculates source and dipole velocities of a lifting element in the near field-influence velocities for elements.
NOEPTS	Inlet Analysis	Determines end points of rakes near hubs shroud and/or splitters.
NOLIFT	Hess Lifting Program	Computes geometric quantities of the now lifting elements.
OFFBDY	Inlet Analysis	Calculates off-body variables.
OLOMFLO	Hess Lifting Program	Combines flow solutions and determines final velocities and pressures.
ONBODY	Inlet Analysis	Calculates on-body variables.
ОТРТ	Viscous Module	Outputs the results of the Cebeci-Smith boundary layer code.
OUTPT	Wooler Jet Model	Transforms local coordinates to program coordinates.
OUTPTI	Wooler Jet Model	Transforms local coordinates to program coordinates for segmented jets.
PART 1	Inlet Analysis	Control for basic data and matrix formulation.
PART 2	Inlet Analysis	Computer source density sigma by siedel iteration.
PART 4	Inlet Analysis	Computes velocity components and print.
PKUTTA	Hess Lifting Program	Computes vortex strength by kurta condition.
PLANE	Wooler Jet Model	Computes intersection of plane with a line.
PRELPS	Inlet Analysis	Calculates geometric propertities in geometry portion of inlet analysis.

SUBROUT INE	MAIN SYSTEM COMPONENT	DESCRIPTION
PREP	Inlet Analysis	Set up tapes for MATSOL solution.
PRINT	Hess Lifting Program	Prints final output.
PROFYL	Inlet Analysis	Computes F(ETA) and G(ETA) in viscous program.
PRTOUT	Wooler Jet Hodel	Prints ut jet centerline data and induced velocities at all control points.
READS	Inlet Analysis	Reads all input.
READ 1	VAPE	Reads block data from a unit.
READ 3	VAPE	Reads multi block data from a unit.
RE AD 4	Inlet Analysis	Reads data for force and moment calculations.
RECJET	Rectangular Jet Model	Main program for rectangular jet method.
REGEN	Inlet Analysis	Transfers data from Unit MT20 to MT29; part of viscous inviscid interaction.
RETMT	VAPE in general	Tape manipulation.
ROTATE	Wooler Jet Model	Rotates fixed coordinates to rotated or rotated to fixed.
SCIRCL	Inlet Analysis	Main geometry routine for inlet analysis.
SDIST	Vought/Weston Jet Model Inlet Analysis	Calculates surface distances.
SE GMN T	Wooler Jet Model	Establishes initial conditions for new segment of jet, for continuation, or a jet and integrates jets.
SETMT	VAPE	Sets up tapes.
SHFT	Viscus Module	Provides initial guess for each station in Cebeci-Smith boundary layer code.
SIMQ	Inlet Analysis	Solves set of simultaneous linear equations.
SINK	Vought/Weston Jet Model	Calculates induced velocities to due sinks along jet centerline.

SUBROUT INE	MAIN SYSTEM COMPONENT	CESCRIPTION
SIETP	Inlet Analysis	Calculates geometric parameters used in combination routine.
SL N6	Viscous Hodule	Determines surface distance from X-Y input for Cebeci-Smith boundary layer code.
SLCPE	Viscous Module	Determines derivative DY/DX from X vs Y input in Cebeci-Smith boundary layer code.
SOLHOR .	Hess Lifting Program	Matrix solution routine. Solves basic Hess matrix with additional right hand sides.
SOLVIT	Inlet Analysis	Natrix solution routine.
SPL IN5	Viscous Module	Interpolation by cubic spline.
SRTNE	Inlet Analysis	Calculates surface distance used in combination routine.
STRAIT	Inlet Analysis	Calculates straight line segments in SCIRCL
STRL INE	Inlet Analysis	Calculates straight line segment.
STRML	Inlet Analysis	This routine calculates streamlines used in combination routine.
SUPERC	Inlet Analysis	Geometry routine in SCIRCL routine.
SUPRD	Inlet Analysis	Determines geometry of noise suppression splitter plates.
TEST	Inlet Analysis	Geometry routine used in SCIRCL geometry routine.
TRANS	Inlet Analysis	Transition location prediction routine.
TRANSA	Wooler Jet Model	Coordinate transformation routine.
TRANSF	Vought/Weston Jet Model	Coordinate transformation routine.
TRANSG	Inlet Analysis	Sets up data for viscous solution.
TRANS3	Wooler Jet Model	Coordinate transformation routine.
TRICK	Inlet Analysis	Smoothing routine.
TRNSF1	Rectangular Jet Model	Coordinate transformation routine.

SUBROUT INE	MAIN SYSTEM COMPONENT	DESCRIPTION
TRN2	Viscous Module	Computes location of boundary layer transition for Cebeci-Smith code.
UERTST	Inlet Analysis	Message generation.
VAPE	VAPE	Main routine for VAPE program. Controls basic logic of program.
VAROFF	Inlet Analysis	Calculates fluid properties off the body.
VBARIT	Inlet Analysis	Solves VBAR combination iteratively. Used in combination routine.
VCOM	Hess Lifting Program	Velocities of configuration determined. Jet and inlet velocities determined through control of this routine.
VELOC	Hooler Jet Model	Determines jet induced velocities.
VEL 1	Wooler Jet Model	Computes effective velocity ratio for downstream jet at exit.
VFMLFT	Hess Lifting Program	Computes the induced velocities in a lifting strip.
VFMNLF	Hess Lifting Program	Computes the induced velocities in a non-lifting strip.
VFORM	Hess Lifting Program	Controls calculation of velocity on a body, plus forms v-matrix.
VIS	Inlet Analysis	Computes effective viscosity and conductivity.
VISCOS	Inlet Analysis	Main control program for viscous routines.
VORCUR	Vought/Weston Jet Model	Definition of vortex curves.
VORT	Vought/Weston Jet Model	Calculate induced velocities due to vorticies.
VORTVEL	Wooler Jet Model	Vortex induced velocities calculated.
WALJET	Vought/Weston Jet Method (STOL)	Calculates effect of wall-jet on ground plane.
WESTON	Vought/Weston Jet Method	Main control program for Weston jet method.

SUBROUT INE	MAIN SYSTEM COMPONENT	DESCRIPTION
WN EAR	Hess Lifting Program	Calculates dipole velocities of wake element in near field.
WPUNCH	Inlet Analysis	Calculates geometric data and places on Unit 1 (MT20).
WRITE 1	VAPE	Write block data.
WRITE 2	VAPE	Write block data.
WRITE 3	VAPE	Write block data.
WRITE 4	VAPE	Write block data.
WRTXY	VAPE	Write data on Unit 20.
XPROD	Nooler Jet Model	Computes cross product of two vectors.
XYZ	Inlet Analysis	Control for X, Y, Z matrices computation.
XYZ1	Inlet Analysis	Compute X, Y, Z matrices for JJ less than or equal .08.
XYZZ	Inlet Analysis	Compute X, Y, Z matrices using Simpson rule integration.

6.2 SUBROUTINE FLOW CHARTS

Flow charts of the VAPE code showing relationships between subroutines are presented in this section. Figure 6.1 shows the main flow of the VAPE system. Figure 6.2 shows the logic for rutine GEOMOD. Figure 6.3 shows the flow for the axisymmetric Hess program. The viscous logic flow is contained in Figure 6.4. The input geometry formulation for the inlet analysis is contained in Figure 6.5. The routine which combines the rlow fields in the inlet analysis routine is presented in Figure 6.6. The Hess routines and various jet methods are presented in Figures 6.7 through 6.9. In these diagrams, the subroutines are called from the other routines as shown. For presentation purposes, some of the reads, writes, and tape manipulation routines have been shown in the same block

FIGURE 6-1. FLOW CHART OF VAPE SUBROUTINES

FIGURE 6-2. FLOW CHART OF GEOMOD SUBROUTINES

FIGURE 6-3. FLOW CHART OF EOD (AXISYMMETRIC HESS) SUBROUTINES

FIGURE 6-5. FLOW CHART OF SCIRCL SUBROUTINES

FIGURE 6-6. FLOW CHART OF COMBYN SUBROUTINES

FIGURE 6-7. FLOW CHART OF HESS SUBROUTINES

FIGURE 6-8. FLOW CHART OF WESTON SUBROUTINES

FIGURE 6-9. FLOW CHART OF JET3 (WOOLER) SUBROUTINES

FIGURE 6-10. FLOW CHART OF VISCOUS MODULE

APPENDIX A - DESCRIPTION OF GEOMETRY PROGRAM FOR DEVELOPING HESS THREE-DIMENSIONAL INPUT

IN-1 PRIMARY CONTROL CARD (2A1, A8, 7A10)
This card controls the main flow of the program.

COLUMN	CODE	ROUTINE FORMAT		EXPLANATION
1	INST(1)	VINPEX Al	Select = F = J = C = H = S	
2	Inst(2)	VINPEX Al	= 0 = I	Conic routine Circle routine
3-80	INST(3)- INST(10)	VINPEX A8, 7A10	module except	o complete description of desired not used in program for output (i.e. foil, Juncpan, t, Stop, etc.).

INPUT TO WING GENERATION ROUTINE

This routine creates a wing panelled for direct input to the HESS program.

F-1 MAIN CONTROL CARD (1615)

COLUMN	CODE	ROUTINE FORMAT		EXPLANATION
1	NPTS	Foil I5		of coordinates on each surface airfoil
6	NFOILI	Foil 15	= 0 ≠ 0	NACA airfoil calculated for inboard profile shape Airfoil coordinates for inboard profile will be input.
11	nfoilo	Foil I5	= 0 ≠ 0	NACA airfoil calculated for cutboard profile shape Airfoil coordinates for out- board profile will be input.
16	IND	Foil 15	= 0 ≠ 0	Divide wing into NS equal panels in spanwise direction Read in non-dimensional spanwise values (N = y/b/2)
21	ns	Foil 15	Number	of spanwise airfoils to be used.
26	IDIHED	Foil 15	= 0 ≠ 0	No dihedral angle considered Dihedral angle will be used in defining wing
31	ITWIST	Foil I5	= 0 + 0	No wing twist considered Wing will be twisted
36	IVERT	Foil 15	= 0 ≠ 0	Horizontal tail, wing, canard will be defined Vertical tail or pylon will be defined

F-2 WING DEFINITION CARD (7F10.0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	CROOT	Foil F10.0	Root chord
11	CTIP	Foil F10.0	Tip chord
21	Sweep	Foil F10.0	Leading edge sweep angle deg.

COLUMN CODE	ROUTINE FORMAT	EXPLANATION
31 BOV2	Foil F10.0	Distance from root to tip (b/2)
41 CRXLI	Fig.0	X Location of root leading edge
51 CRYLL	Fig.0	Y Location of root leading edge
61 CRZLI	Foil F10.0	2 Location of root leading edge

F-3 DIHEDRAL DEFINITION CARD (7F10.0) (Read only if IDIHED>0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	DANGLE	Foil F10.0	Dihedral angle in degrees
11	YD.	Foil F10.0	Y location of rotation for dihedral
21	ZD	Foil F10.0	Z location of rotation for dihedral

F-4 TWIST DEFINITION CARD (7F10.0) (Read only if ITWIST 7D)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	TWIST(1)	Foil F10.0	Twist angle - Deg. for tip airfoil
11	TWIST(2)	Foil F10.0	Twist angle - deg at 2nd airfoil station
21	TWIST(3)		Rotation is about L.E of airfoil. Clockwise is positive (i.e trailing edge down).
eto	2		erke down.
			Input 7 twist values per card NS values total. Last value is twist at root section.

F-5 X DEFINITION CARDS (7F10.0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	x 0c(1)*	Foil Fl0.0	X/C values used to define airfoil
11	Atc		

F-6 INBOARD AIRFOIL DEFINITION CARD (F10.1) (Input only if NFOILI 0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	TYPEI	Foil FlO.1	NACA Airfoil definition either 4 or 5 digit series, i.e. 0012, 2412, 64006, etc.

F-7 INBOARD AIRFOIL UPPER SURFACE DEFINITION CARD (7F10.0) (Input only if NFOILI>0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	ZIU(I)*	Foil Fl0.0	Z/C value for root upper surface

F-8 INBOARD AIRFOIL LOWER SURFACE DEFINITION CARD (7F10.0) (Input only if NFOILI>0) and IVERT = 0)

COLUMN	CODE	ROUTINE FORMAT		EXPLANATION
1	ZIL(1)*	Foil F10.0	Z/C value	for root trailing surface

F-9 OUTBOARD AIRFOIL DEFINITION CARD (F10.1)(Input only if NFOILO = 0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	TYPEO	Foil F10.1	Same explanation as for TYPE I

F-10 OUTBOARD AIRFOIL UPPER SURFACE DEFINITION CARD (F10.1) (Input only if NFOILO > 0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	ZOU(I)*	Foil F10.0	2/C values for tip upper surface
11	Etc.		

F-11 OUTBOARD AIRFOIL, LOWER SURFACE, DEFINITION (F10.1) (Input only if NFOILO>0) and IVERT = 0)

COLUMN	CODE	FORMAT	EXPLANATION
1	ZOL(I)*	Foil F10.0	Z/C values for tip lower surface

F-12 SPANWISE PANEL DEFINITION CARD (F10.1) (Input only if IND # 0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	ETA(2)	Foil F10.0	Location of spanwise sections to be defined ETA = $y/b/2$

*Input 7 values per card NPTS total values

SUBROUTINE CONICS

CO-1 SOURCE PANEL CONTROL CARD (215) (Used on first case only)

COLUMN	CODE	ROUTINE FORMAT	<u>EXPLANATION</u>
1	NTOT	CONICG 15	Number of source panels per N-line
6	ITRULE	CONICG I5	= 0 HESS format on output and tape = 1 Writes X(I), Y(I) and Z(I) on output and tape also = 0 input more cases

CO-1' is the same as CO-1 except ITRULE is not included.

CO-2 TRANSLATION CARDS (3F10.0, 2A10) (Used on subsequent cases if NTOT < 0 return)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	XOR	CONICS F10.0	X Value used to translate all coordinates
11	YOR	CONICS F10.0	Y Value used to translate all coordinates
21	ZOR	CONICS F10.0	Z Value used to translate all coordinates
31	SECID	CONICS F10.0	Section ID see HESS input for definition
41	XTRPRN	CONICS F10.0	Print flag used in HESS see HESS for details

CO-3 INITIAL POINT CARD (3F10.0 2A10)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	XE	CONICS F10.0	X coordinate for 1st point X _o , in figure Co-1
11	YE	CONICS F10.0	Y coordinate for 1st point Y _o in figure Co-1
21	ZE	CONICS F10.0	Z coordinate for 1st point Z _o in figure Co-1

CO-4 CURVE DEFINITION CARD (A1, A9, 15, 5X, F10.0, 3A10)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	NMI	CONICS A1	<pre>NMI = S Straight curve generated</pre>
2	nm2	CONICS A9	Identifier used so that words straight and curve can be input rather than S and C used only for output.
11	N	CONICS 15	Number of equally spaced intervals on curve generated.
21	RHO	CONICS F10.0	Nondimensional distance of mid point from center of Conic, see figure Co-l (input only if NMl = C).
31 41 51	XC YC ZC	CONICS 3A10	These are center of Conic, input only if Conic does not lie in a primary plant or Conic is concave otherwise program will calculate.

CO-5 FINAL POINT CARD (3F10.5, 15)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	XE	CONICG F10.5	<pre>x coordinate for last point on conic (x_n in figure Co-l)</pre>
11	YE	CONICG F10.5	y coordinate for last point on conic (yn in figure Co-1)
21	ZE	CONICG F10.5	<pre>z coordinate for last point on conic (z_n in figure Co-1)</pre>
31	NPARTS	CONIGG 15	number of parts conic is to be divided into. This value used only if it is desired to vary the point spacing over the conic or to output points over more or less than the full quadrant.

CO-6 CONIC DIVISION CONTROL CARD (215) (INPUT ONLY IF NPARTS>0)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	NJ	CONICG 15	The number of segments on part of the conic. NJ is input NPARTS times. The order of input is from lst point to last (if data on only part of conic desired set NJ=0 on other part not desired).

CO-7 CONIC DIVISION VALUES (3F10.4, 15)

COLUMN	CODE	ROUT INE FORMAT	EXPLANATION
1	ХJ	CONICG F10.4	x value of END of segment of CONIC
11	YJ	CONICG F10.4	y value of end of segment of conic
21	2J	CONICG F10.4	z value of ead of segment of conic

NPARTS number of these values input XJ, YJ, ZJ must progress on along conic line from first to last point (for part of conic not desired set starting and end points the same except for slight drift to prevent numerical bomboffs).

 $RHO = \frac{D_0}{D_1}$

Figure CO-1

SUBROUTINE CIRCON

This subroutine generates data for inlets - halfinlets - circle - half circle.

C-1 PROGRAM CONTROL CARD (2A4, A2, 3X, I2, 5X, 2A10)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	N1	CIRCGN A4	Nl = half do half circle or half inlet Nl = circ do circle Nl = inle do inlet Nl = END stops execution CIPCON
5	N2	CIRCGN A4	used to complete definition of surface to consider if N1 = half then N2 =-INL do half inlet N2 =-CIR do half circle
9	м3	CIRCGN A2	used to complete definition of surface, used in output only
14	N	CIRCGN 12	input for circles and half circles only. The number of divisions of the angular location of pts ($\Delta\psi = \frac{2\pi}{N}$ (circles)
21	Ll	CIRCGN A10	N Section ID - Hess input - see hess for details
Jl Note:	L2 N1 + N2 +	CIRCGN Al0 N3 = inlet half-inlet circle half-circle	Print Flag - See HESS input for details

C2 CURVE DEFINITION CARD (4F10.0, A10)

These are only acceptable inputs to N1 N2 & NG

COLUMN	CODE	ROUT INE FORMAT	EXPLANATION
1	D	CIRCGN F10.0	Diameter of circle on inlet (input only if R=0)
11	R	CIRUGN F10.0	Radius of circle or inlet (input only if D=0)
21	PHIZ	CIRCGN F10.0	Initial value of angular position input for circles or half circles only
31	PHIF	CIRCGN F10.0	Final value of angular position input for circles or half sire as only

C-3 CURVE ROTATION CARD (4F10.0, A10)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	XC	CIRCGN F10.0	x center of rotation
11	YC	CIRCGN F10.0	y center of rotation
21	ZC	CIRCGN F10.0	z center of rotation
31	ROT	CIRCGN F10.0	rotation about pitch axis about (x_c, y_c, z_c) degrees
41	ngendfl	CIRCGN F10.0	if blank ENDFILE written on tape if nonblank no ENDFILE written

when done with CIRCGN input N1 = end

SUBROUTINE HESPLT

Subroutine HESPLT generates CALCOMP plots of the hess input geometry. The HESPLT input consists of all of the hess input plus some viewing angle input data. Therefore we will only show the extra data required here and will return the user to the hess input section for the main body of input data.

HESS DATA INPUT (See hess input)

Following HESS input the following card or cards are added

HP-1 VIEWING ANGLE CONTROL CARDS (4F10,3,20X,2A10)

COLUMN	CODE	ROUTINE PORMAT	EXPLANATION
1	ALPHA	Hesplt	pitch angle at desired view deg (+ left hand rule) if ALPHA input greater than 360° then program terminates. Use this option to END DATA input.
11	BETA	HESPLT F10.3	<pre>#AW angle of desired view (POS according to right hand rule)</pre>
21	PHI	HESPLT F10.3	Roll angle at desired view (positive according to left hand rule)
31	SKALE	HESPLT F10.3	Plot scale If scale = 0 the routine will determine the proper scale.
61	W(1)	HESPLT A10	to character alpha numeric array describing view
71	W(2)	HESPLT A10	(i.e. top view)

Input as many of the viewing angles as desired at this point stopping input with a value >360 in the alpha input array.

SUBROUTINE JUNC PAN

This routine finds the juncture between a nonlifting HESS section (fuselage, nacelle) and a lifting section (wing, horizontal, vertical). The input consists of coordinate data set up for hess input. The data required is listed below. For details on the proper order of data see the HESS input module.

TITLE CARD (8A10)

COLURS	CODE	ROUTINE FORMAT	EXPLANATION
1	TITLE (I)	JUNC 8A10	Title of case

NON LIFTING SECTION CONTROL CARD (1615)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	NLSTR	JUNC 15	Number of non-lifting strips in non-lifting section
6	nlsør	JUNC 15	Number of panels per strip in non lifting section

LIFTING SECTION CONTROL CARD (1615)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	NSTRIP	JUNC 15	Number of lifting strips in lifting section
6	nsørce	JUNC 15	Number of panels per strip in lifting section
11	nwake	JUNC 15	Number of wake panels per strip in lifting section

NON LIFTING SECTION INPUT CARDS (T61,A10,T1,(6F10.4))

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	XNL(I)	JUNC F10.4	x coordinates on 1st N line of non lifting section
11	YNL(1)	JUNC F10.4	y coordinate on 1st N line of non-lifting section
21	ZNL(I) ZNL(I)	JUNC F10.4	z coordinate on 1st N line of non-lifting section

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
31	XNL(I+)	JUNC F10.4	
41	YNL(I+1)	JUNC F10.4	
51	ZNL(I+1)	JUNC F10.4	
61	SECIDNL	JUNC A10	Section identifier

z sets of XNL, YNL, ZNL per card input NLS#R+1 values

NON-LIFTING SECTION INPUT CARDS (6F10.4)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	XNL(I)	JUNC F10.4	x coordinate on N line of non lifting coordinates
11	YNL(I)	JUNC F10.4	y corresponding to x above
21	ZNL(I)	JUNK F10.4	z corresponding to x above
31	XNL(I)	JUNK F10.4	

etc

Input 2 sets of XNL, YNL, ZNL per card.

Input NLSDR+1 values.

Repeat these cards for all N lines in this section (I=2, NLSTR+1).

LIFTING SECTION INPUT CARDS (T61,A10,T1, (6F10.4))

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	XL(I)	JUNC F10.4	x coordinate on 1st N-line of lifting section.
11	YL(I)	JUNC F10.4	y coordinate of 1st N-line of lifting section
21	ZL(I)	JUNC F10.4	z coordinate of 1st N-line of lifting section

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
31	XL(I+)	JUNC F10.4	
41	YL(I+1)	JUNC F10.4	
51	ZL(I+1)		
61	SECIDL	JUNC A10	Lifting Section Identical

Input 2 sets of XL, YL, ZL per card Input NSORCE + NWAKE+1 values

LIFTING SECTION INPUT CARDS (6F10.4)

COLUMN	CODE	ROUTINE FORMAT	EXPLANATION
1	XL(I)	JUNC F10.4	x coordinate on Nline of lifting section
11	YL(I)	JUNC F10.4	y coordinate on N line of lifting section
21	ZL(I)	JUNC F10.4	z coordinate on N line of lifting section
31	XL(I)	JUNC F10.4	x coordinate on N line of lifting section

Input 2 sets of XL, YL, ZL per card.
Input NSORCE + NWAKE +1 values for each N line.
Repeat input NSTRIP + 1 times.

APPENDIX B - INTERACTIVE GRAPHICS INPUT PROGRAM (HESTEK)

The input geometry required by the Hess three-dimensional program must be developed carefully in order to adequately describe the configuration being analyzed. Most aircraft configurations are complex and thus require a considerable manhour expenditure to develop an appropriate model. For example, the modeling of a typical V/STOL configuration, without using any of the input routines discussed in this report, could take two to four weeks of concentrated effort. Even using the routines in this report, considerable effort is still required and the possibility of mistakes in the geometry is high due to the large number of coordinates involved. Therefore in order to reduce both the model development time and the possibility of errors, a stand alone interactive graphics program was developed. This program permits the user to display all or part of the model developed and to make corrections where necessary. The program has the capability of moving points, lines or sections, adding or deleting lines and deleting sections. Note that individual points may only be moved, they can not be added or deleted.

The following discussion describes the operation of this program.

PROGRAM DISPLAY CAPABILITIES

When program HESTEK is accessed, a graphical representation, Figure B-1, will appear on the screen. The current values of scale factor and pitch, roll and yaw angles will be displayed. This graphical display can be altered in several ways as explained below.

A) PLOT SCALING

The size of the graph being displayed can be changed in several ways.

- The size can be increased by a factor of 2 by pressing the (>) (greater than) key. The display will erase and be replotted twice the original size. This process can be repeated as many times as desired.
- (2) The size can be decreased by a factor of 2 by pressing the (<) (less than) key. The display will erase and be replotted at one-half the original size. This process can be repeated.
- (3) The scale parameter can be changed to whatever the user desires by pressing the (I) key. The program will then respond with a request and the scale desired can be input.

B) PLOT POSITION

In the process of scaling, it sometimes becomes necessary to reposition the viewing window so that a particular region of the configuration is at the center. This is accomplished by moving the cross hairs to the point on the current graph that is desired to be in the center. The (*) (equal) sign key is now depressed which will cause the graph to be replotted at the same scale with this new position in the center of the graph.

C) CONTENTS OF DISPLAY

The contents of the display may also be altered. It may be desired to only view one section or possibly a group of sections alone. This can be done by hitting the (S) key. The program will respond by asking what section or sections are desired. The sections are selected either by section number, section ID, or section type, (i.e., all non-lifting sections may be plotted) (Figure B-2).

PROGRAM MODIFICATION CAPABILITIES

Once a graphical representation of the model is available, it sometimes becomes desirable to modify the model by: (1) moving points, lines, or even sections, (2) adding or deleting a strip-line or panel-line, and (3) deleting a section. The programs contain several options as described below for performing these tasks.

A) MOVING A POINT, LINE OR SECTION

Either an individual point, a particular line or an entire section may be moved as explained below.

(1) MOVEMENT OF A POINT

Position the crosshairs on the point to be moved and depress the (.) (period) key. A slash will then be placed on this point for identification. Then move the cursur crosshairs to the position desired and depress the (@) key. The plot will be redrawn with the point moved.

(2) MOVEMENT OF A LINE

If an entire line is to be moved, a similar procedure is followed. Position the cursur crosshairs over one point in the line, at an intersection point, and depress the (L) key. Then, in order to identify the line, move to another point on the line and again depress the (L) key. Note, if desired several points on the line may be chosen as above. Then, position the cursur crosshairs where it is desired to move the first point on the line, and depress the (@) key. The entire line will then be moved to this new location. This procedure works on either a strip-line or a panel-line.

(3) MOVEMENT OF A SECTION

An entire section may be repositioned if desired, by placing the cursur crosshairs at a control point selected within the section and depressing the (T) key. This control point must be a point for which the transformed location is known. Then move the cursurs to the location where the control point is to be transformed and depress the (@) key. The plot will be redrawn with the section containing the control point moved to the new location.

B) ADDING A LINE

A line may be added to a configuration by the following procedure: (1) position the cursur at a point where a line is desired and depress the (.) (period) or (L) key. Then move the cursur to another point where the line is pass through and depress the (+) key. A line will then be formed from the existing data by interpolation which passes through the two points chosen above.

C) DELETING A LINE OR SECTION

A line or section may be deleted as explained below

(1) DELETING A LINE

Place the cursur on one point in the line and press the (.) (period) or (L) key. Then move the cursur to another point on the line and depress the (-) key. This will remove that line from the section.

(2) DELETING A SECTION

Place the cursur on a point in a section and depress the (T) key. Then depress (-) key to delete section.

PROGRAM EDITING CAPABILITIES

The data set from which the plots are drawn may be edited as explained below. The data set can be viewed by depressing the (E) key. This causes the data set to be printed on the screen one page at a time. The following procedure is used to modify values in the data set.

(1) CHANGING AN ENTRY

To change a value in the data set, move the cursur to the value in question and depress the (C) key and then enter the new value. This is repeated as needed.

(2) VERIFICATION OF CHANGES

After making changes, depress the (V) key, this will cause the same page to be rewritten with the changes incorporated.

(3) LISTING OF DATA

After a change in made or after a page has been reviewed, depress the (g) key to continue listing data.

(4) SKIPPING DATA

If it is desired to skip parts of a section, simply depress the (N) key. This will cause the program to skip to the next data section.

(5) EXITING FROM EDIT MODE

Depressing the (:) (cclon) key causes the program to return to the program mode.

There are several other operations which may be performed when operating this program. These operations are discussed below. In addition, the location of the modified data files are discussed.

- (1) At any time in the modification of a data set, the current data may be saved by depressing the (C) key. This creates a file called CHKDAT. Everytime the (C) key is pressed, the file is rewritten.
- (2) It mistakes are made in a change and it is desired to return to the previous data set, simply depress the (N) key. This deletes the current change.
- (3) If it is desired to return to the original data set depress the (0) key.
- (4) If it is desired to view the file saved or the CHKDAT file, depress the (R) key.

Finally, when all modifications and operations are finished, depress the (B) key. This terminates the program. At termination, three files are available: (1) the original data file is available under the input file name and tape 5; (2) the CHKDAT file is available and (3) the final file which was being worked on at termination is stored on the NEWDAT file. Note tht by proper use of the CHKDAT file, it is possible to create two files which contain different modifications to the same configuration.

ORIGINAL PAGE IS OF POOR QUALITY

SCALE = 1.0 PITCH = 0.0 YAW = 0.0 ROLL = 90.0

Figure B-1. Criginal Plot placed on screen

ORIGINAL PAGE 18 OF POOR QUALITY

SCALE = 1.0
PITCH = 0.0
YAW = 0.0
ROLL = 90.0
ALL
NONLIFTING
LIFTING
INLETS
1 MAIN SECT
2 SECTION 2

SECTION 2
SECTION 3
SECTION 4

Figure B-2. Plot displayed when (S) Key Depressed