16,174 research outputs found
A single weekly Kt/Vurea target for peritoneal dialysis patients does not provide an equal dialysis dose for all
Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.Dialysis adequacy is traditionally based on urea clearance, adjusted for total body volume (Kt/Vurea), and clinical guidelines recommend a Kt/Vurea target for peritoneal dialysis. We wished to determine whether adjusting dialysis dose by resting and total energy expenditure would alter the delivered dialysis dose. The resting and total energy expenditures were determined by equations based on doubly labeled isotopic water studies and adjusted Kturea for resting energy expenditure and total energy expenditure in 148 peritoneal dialysis patients (mean age, 60.6 years; 97 male [65.5%]; 54 diabetic [36.5%]). The mean resting energy expenditure was 1534 kcal/d, and the total energy expenditure was 1974 kcal/day. Using a weekly target Kt/V of 1.7, Kt was calculated using V measured by bioimpedance and the significantly associated (r = 0.67) Watson equation for total body water. Adjusting Kt for resting energy expenditure showed a reduced delivered dialysis dose (ml/kcal per day) for women versus men (5.5 vs. 6.2), age under versus over 65 years (5.6 vs. 6.4), weight 80 kg (5.8 vs. 6.1), low versus high comorbidity (5.9 vs. 6.2), all of which were significant. Adjusting for the total energy expenditure showed significantly reduced dosing for those employed versus not employed (4.3 vs. 4.8), a low versus high frailty score (4.5 vs. 5.0) and nondiabetic versus diabetic (4.6 vs. 4.9). Thus, the current paradigm for a single target Kt/Vurea for all peritoneal dialysis patients does not take into account energy expenditure and metabolic rate and may lead to lowered dialysis delivery for the younger, more active female patient.Peer reviewedFinal Accepted Versio
A Sinusoidal Current Driver With an Extended Frequency Range and Multifrequency Operation for Bioimpedance Applications
This paper describes an alternative sinusoidal current driver suitable for bioimpedance applications where high frequency operation is required. The circuit is based on a transconductor and provides current outputs with low phase error for frequencies around its pole frequency. This extends the upper frequency operational limit of the current driver. Multifrequency currents can be generated where each individual frequency is phase corrected. Analysis of the circuit is presented together with simulation and experimental results which demonstrate the proof of concept for both single and dual frequency current drivers. Measurements on a discrete test version of the circuit demonstrate a phase reduction from 25 ^{\circ} to 4 ^{\circ} at 3 MHz for 2 mAp-p output current. The output impedance of the current driver is essentially constant at about 1.1 M \Omega over a frequency range of 100 kHz to 5 MHz due to the introduction of the phase compensation. The compensation provides a bandwidth increase of a factor of about six for a residual phase delay of 4 ^{\circ
An Empirical-Mathematical Approach for Calibration and Fitting Cell-Electrode Electrical Models in Bioimpedance Tests
This paper proposes a new yet efficient method allowing a significant improvement in the on-line analysis of biological cell growing and evolution. The procedure is based on an empirical-mathematical approach for calibration and fitting of any cell-electrode electrical model. It is valid and can be extrapolated for any type of cellular line used in electrical cell-substrate impedance spectroscopy (ECIS) tests. Parameters of the bioimpedance model, acquired from ECIS experiments, vary for each cell line, which makes obtaining results difficult and—to some extent-renders them inaccurate. We propose a fitting method based on the cell line initial characterization,and carry out subsequent experiments with the same line to approach the percentage of well filling and the cell density (or cell number in the well). To perform our calibration technique, the so-called oscillation-based test (OBT) approach is employed for each cell density. Calibration results are validated by performing other experiments with different concentrations on the same cell line with the same measurement technique. Accordingly, a bioimpedance electrical model of each cell line is determined, which is valid for any further experiment and leading to a more precise electrical model of the electrode-cell system. Furthermore, the model parameters calculated can be also used by any other measurement techniques. Promising experimental outcomes for three different cell-lines have been achieved, supporting the usefulness of this technique
Pain detection with bioimpedance methodology from 3-dimensional exploration of nociception in a postoperative observational trial
Although the measurement of dielectric properties of the skin is a long-known tool for assessing the changes caused by nociception, the frequency modulated response has not been considered yet. However, for a rigorous characterization of the biological tissue during noxious stimulation, the bioimpedance needs to be analyzed over time as well as over frequency. The 3-dimensional analysis of nociception, including bioimpedance, time, and frequency changes, is provided by ANSPEC-PRO device. The objective of this observational trial is the validation of the new pain monitor, named as ANSPEC-PRO. After ethics committee approval and informed consent, 26 patients were monitored during the postoperative recovery period: 13 patients with the in-house developed prototype ANSPEC-PRO and 13 with the commercial device MEDSTORM. At every 7 min, the pain intensity was measured using the index of Anspec-pro or Medstorm and the 0-10 numeric rating scale (NRS), pre-surgery for 14 min and post-anesthesia for 140 min. Non-significant differences were reported for specificity-sensitivity analysis between ANSPEC-PRO (AUC = 0.49) and MEDSTORM (AUC = 0.52) measured indexes. A statistically significant positive linear relationship was observed between Anspec-pro index and NRS (r(2) = 0.15, p < 0.01). Hence, we have obtained a validation of the prototype Anspec-pro which performs equally well as the commercial device under similar conditions
Electrical properties of breast cancer cells from impedance measurement of cell suspensions
Impedance spectroscopy of biological cells has been used to monitor cell status, e.g. cell proliferation, viability, etc. It is also a fundamental method for the study of the electrical properties of cells which has been utilised for cell identification in investigations of cell behaviour in the presence of an applied electric field, e.g. electroporation. There are two standard methods for impedance measurement on cells. The use of microelectrodes for single cell impedance measurement is one method to realise the measurement, but the variations between individual cells introduce significant measurement errors. Another method to measure electrical properties is by the measurement of cell suspensions, i.e. a group of cells within a culture medium or buffer. This paper presents an investigation of the impedance of normal and cancerous breast cells in suspension using the Maxwell-Wagner mixture theory to analyse the results and extract the electrical parameters of a single cell. The results show that normal and different stages of cancer breast cells can be distinguished by the conductivity presented by each cell. © 2010 IOP Publishing Ltd
Signal calibration for an electrical impedance mammography system
Electrical Impedance Tomography (EIT) technology has been applied clinically since the 1980s. Numerous papers have addressed a variety of systematic error sources and indicated different calibration methods. The Sussex Mk4 Electrical Impedance Mammography (EIM) system has been developed for the investigation of early stage breast lesions. Investigations have shown that the system performance is subjected to a number of systematic errors: frequencies-dependant noise level due to both internal and external sources; stray capacitance within both PCB tracks and cable connections; and artefacts generated by patient movement during scanning etc. This paper reports upon several traditional and novel calibration methods utilized to reduce some of these errors in the acquired signals before image reconstruction. Techniques used include frequency spectrum analysis, filtering, phase calibration and other means of noise reduction. Results of both before and after calibration are presented and analyzed. The conclusion is reached that the signal quality of the Sussex Mk4 EIM system is such that the system is, post-calibrated, capable of producing images for the diagnosis of breast cancer
Effect of electrolyzed high-pH alkaline water on blood viscosity in healthy adults.
BACKGROUND: Previous research has shown fluid replacement beverages ingested after exercise can affect hydration biomarkers. No specific hydration marker is universally accepted as an ideal rehydration parameter following strenuous exercise. Currently, changes in body mass are used as a parameter during post-exercise hydration. Additional parameters are needed to fully appreciate and better understand rehydration following strenuous exercise. This randomized, double-blind, parallel-arm trial assessed the effect of high-pH water on four biomarkers after exercise-induced dehydration.
METHODS: One hundred healthy adults (50 M/50 F, 31 ± 6 years of age) were enrolled at a single clinical research center in Camden, NJ and completed this study with no adverse events. All individuals exercised in a warm environment (30 °C, 70% relative humidity) until their weight was reduced by a normally accepted level of 2.0 ± 0.2% due to perspiration, reflecting the effects of exercise in producing mild dehydration. Participants were randomized to rehydrate with an electrolyzed, high-pH (alkaline) water or standard water of equal volume (2% body weight) and assessed for an additional 2-h recovery period following exercise in order to assess any potential variations in measured parameters. The following biomarkers were assessed at baseline and during their recovery period: blood viscosity at high and low shear rates, plasma osmolality, bioimpedance, and body mass, as well as monitoring vital signs. Furthermore, a mixed model analysis was performed for additional validation.
RESULTS: After exercise-induced dehydration, consumption of the electrolyzed, high-pH water reduced high-shear viscosity by an average of 6.30% compared to 3.36% with standard purified water (p = 0.03). Other measured biomarkers (plasma osmolality, bioimpedance, and body mass change) revealed no significant difference between the two types of water for rehydration. However, a mixed model analysis validated the effect of high-pH water on high-shear viscosity when compared to standard purified water (p = 0.0213) after controlling for covariates such as age and baseline values.
CONCLUSIONS: A significant difference in whole blood viscosity was detected in this study when assessing a high-pH, electrolyte water versus an acceptable standard purified water during the recovery phase following strenuous exercise-induced dehydration
Comparison of two cardiac output monitors, qCO and LiDCO, during general anesthesia
Background: Optimization of cardiac output (CO) has been evidenced to reduce postoperative complications and to expedite the recovery. Likewise, CO and other dynamic cardiac parameters can describe the systemic blood flow and tissue oxygenation state and can be useful in different clinical fields. This study aimed to validate the qCO monitor (Quantium Medical, Barcelona, Spain), a new device to estimate CO and other related parameters in a continuous, fully non-invasive way using advanced digital signal processing of impedance cardiography.
Methods: The LiDCOrapidv2 (LiDCO Ltd, London, UK) was used to compare the performance of the qCO in 15 patients during major surgery under general anesthesia. Full surgeries were recorded and cardiac output obtained by both devices was compared by using correlation and Bland-Altman analysis.
Results: The Bland-Altman analysis showed sufficient agreement with a mean bias of -0.03 ± 0.71 L/min.
Conclusions: The findings showed that both systems offered comparable values and thus the non-invasive measurement of CO with qCO is a promising, feasible method. Further investigation will be required to validate this new device against calibrated devices and outcome studies would also be highly recommended.Postprint (author's final draft
Influence of Body Composition on Arterial Stiffness in Middle-Aged Adults: Healthy UAL Cross-Sectional Study
Background and objectives: Several anthropometric and body composition parameters have been linked to arterial stiffness (AS) as a biomarker of cardiovascular disease. However, little is known about which of these closely related factors is more strongly associated with AS. The aim of the present study was to analyze the relationship of different anthropometric and body composition parameters with AS in middle-aged adults. Materials and Methods: This cross-sectional study included 186 middle-aged participants (85 women, 101 men; age = 42.8 ± 12.6 years) evaluated as part of the Healthy UAL study, a population study conducted at the University of Almería with the main purpose of analyzing the etiology and risk factors associated with cardio-metabolic diseases. Anthropometric measures included neck, waist, and hip circumferences, as well as the waist-to-height ratio (WHtr). Bioimpedance-derived parameters included fat-free mass index (FFMI), fat mass index (FMI), and percent of body fat (%BF). AS was measured by pulse wave velocity (PWV). The relationships of interest were examined through stepwise regression analyses in which age and sex were also introduced as potential confounders. Results: Neck circumference (in the anthropometric model; R2: 0.889; β: age = 0.855, neck = 0.204) and FFMI (in the bio-impedance model; R2: 0.891; β: age = 0.906, FFMI = 0.199) emerged as significant cross-sectional predictors of AS. When all parameters were included together (both anthropometry and bio-impedance), both neck circumference and FFMI appeared again as being significantly associated with AS (R2: 0.894; β: age = 0.882, FFMI = 0.126, neck = 0.093). Conclusion: It was concluded that FFMI and neck circumference are correlated with AS regardless of potential confounders and other anthropometric and bioimpedance-derived parameters in middle-aged adults
- …
