942,753 research outputs found

    A new diamond biosensor with integrated graphitic microchannels for detecting quantal exocytic events from chromaffin cells

    Full text link
    The quantal release of catecholamines from neuroendocrine cells is a key mechanism which has been investigated with a broad range of materials and devices, among which carbon-based materials such as carbon fibers, diamond-like carbon, carbon nanotubes and nanocrystalline diamond. In the present work we demonstrate that a MeV-ion-microbeam lithographic technique can be successfully employed for the fabrication of an all-carbon miniaturized cellular bio-sensor based on graphitic micro-channels embedded in a single-crystal diamond matrix. The device was functionally characterized for the in vitro recording of quantal exocytic events from single chromaffin cells, with high sensitivity and signal-to-noise ratio, opening promising perspectives for the realization of monolithic all-carbon cellular biosensors

    On the Use of Gallic Acid as a Potential Natural Antioxidant and Ultraviolet Light Stabilizer in Cast-Extruded Bio-Based High-Density Polyethylene Films

    Get PDF
    This study originally explores the use of gallic acid (GA) as a natural additive in bio-based high-density polyethylene (bio-HDPE) formulations. Thus, bio-HDPE was first melt-compounded with two different loadings of GA, namely 0.3 and 0.8 parts per hundred resin (phr) of biopolymer, by twin-screw extrusion and thereafter shaped into films using a cast-roll machine. The resultant bio-HDPE films containing GA were characterized in terms of their mechanical, morphological, and thermal performance as well as ultraviolet (UV) light stability to evaluate their potential application in food packaging. The incorporation of 0.3 and 0.8 phr of GA reduced the mechanical ductility and crystallinity of bio-HDPE, but it positively contributed to delaying the onset oxidation temperature (OOT) by 36.5 °C and nearly 44 °C, respectively. Moreover, the oxidation induction time (OIT) of bio-HDPE, measured at 210 °C, was delayed for up to approximately 56 and 240 min, respectively. Furthermore, the UV light stability of the bio-HDPE films was remarkably improved, remaining stable for an exposure time of 10 h even at the lowest GA content. The addition of the natural antioxidant slightly induced a yellow color in the bio-HDPE films and it also reduced their transparency, although a high contact transparency level was maintained. This property can be desirable in some packaging materials for light protection, especially UV radiation, which causes lipid oxidation in food products. Therefore, GA can successfully improve the thermal resistance and UV light stability of green polyolefins and will potentially promote the use of natural additives for sustainable food packaging applications

    Fungi as source for new bio-based materials: a patent review

    Get PDF
    Background The circular economy closes loops in industrial manufacturing processes and minimizes waste. A bio-based economy aims to replace fossil-based resources and processes by sustainable alternatives which exploits renewable biomass for the generation of products used in our daily live. A current trend in fungal biotechnology—the production of fungal-based biomaterials—will contribute to both. Results This study gives an overview of various trends and development applications in which fungal mycelium is used as new and sustainable biomaterial. A patent survey covering the last decade (2009–2018) yielded 47 patents and patent applications claiming fungal biomass or fungal composite materials for new applications in the packaging, textile, leather and automotive industries. Furthermore, fungal-based materials are envisaged for thermal insulation and as fire protection materials. Most patents and patent applications describe the use of different lignin- and cellulose-containing waste biomass as substrate for fungal cultivations, covering 27 different fungal species in total. Our search uncovered that most patent activities are on-going in the United States and in China. Conclusion Current patent developments in the field suggest that fungal bio-based materials will considerable shape the future of material sciences and material applications. Fungal materials can be considered as an excellent renewable and degradable material alternative with a high innovation potential and have the potential to replace current petroleum-based materials.TU Berlin, Open-Access-Mittel - 201

    Kinkon biobib: life and work of Dom Sylvester Houedard

    Full text link
    Bio-bibliographical essay on British Benedictine monk, scholar, translator, concrete poet and artist Dom Sylvester Houédard (1924–92). Based on scarce published materials and primary sources, this chronology emphasises artistic over religious and other activities, and public over private ones. It lists events where Houédard had an active involvement (group and solo exhibitions – focusing on UK based ones, and those where a catalogue was published; talks, readings and performances – including recordings; collaborations), significant artworks, monographic publications (broadsheets, print folders, cards, pamphlets, monographs, exhibition catalogues, anthologies) and serial publications (articles and magazines)

    Protein-based materials, toward a new level of structural control

    Get PDF
    Through billions of years of evolution nature has created and refined structural proteins for a wide variety of specific purposes. Amino acid sequences and their associated folding patterns combine to create elastic, rigid or tough materials. In many respects, nature’s intricately designed products provide challenging examples for materials scientists, but translation of natural structural concepts into bio-inspired materials requires a level of control of macromolecular architecture far higher than that afforded by conventional polymerization processes. An increasingly important approach to this problem has been to use biological systems for production of materials. Through protein engineering, artificial genes can be developed that encode protein-based materials with desired features. Structural elements found in nature, such as β-sheets and α-helices, can be combined with great flexibility, and can be outfitted with functional elements such as cell binding sites or enzymatic domains. The possibility of incorporating non-natural amino acids increases the versatility of protein engineering still further. It is expected that such methods will have large impact in the field of materials science, and especially in biomedical materials science, in the future

    Environmental analysis of innovative sustainable composites with potential use in aviation sector - A life cycle assessment review

    Get PDF
    The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact. Aviation industry is working on promising technologies to mitigate this environmental impact. Lightweight design is a strong lever to lower the fuel consumption and, consequently, with it the emissions of aviation. High performance composites are a key technology to help achieve these aims thanks to their favourable combination of mechanical properties and low weight in primary structures. However, mainly synthetic materials such as petrol based carbon fibres and epoxy resins are used nowadays to produce composite in aviation. Renewable materials like bio-based fibres and resin systems offer potential environmental advantages. However, they have not found their way into aviation, yet. The reasons are reduced mechanical properties and, especially for the use of natural fibres, their flammability. Improvements of these shortcomings are under investigation. Therefore the application of bio-based and recycled materials in certain areas of the aircraft could be possible in the future. Good examples for applications are furnishings and secondary structures. The motivation for this paper is to give an overview of potential environmental properties by using such eco-materials in aviation. Life cycle assessment (LCA) is a tool to calculate environmental impacts during all life stages of a product. The main focus is laid on the bio-fibres flax and ramie, recycled carbon fibres and bio-based thermoset resin systems. Furthermore an overview of environmental aspects of existing composite materials used in aviation is given. Generally, a lack of LCA results for the substitution of synthetic materials by bio-based/recycled composite materials in aviation applications has been identified. Therefore, available information from other transport areas, such as automotive, has been summarized. More detailed LCA data for eco-composite materials and technologies to improve their properties is important to understand potential environmental effects in aviation

    Multi-objective optimisation of bio-based thermal insulation materials in building envelopes considering condensation risk

    Get PDF
    The reduction in energy demand for heating and cooling with insulation materials increases the material related environmental impact. Thus, implementing low embodied energy materials may equilibrate this trade-off. Actual trends in passive house postulate bio-based materials as an alternative to conventional ones. Despite that, the implementation of those insulators should be carried out with a deeper analysis due to their hygroscopic properties. The moisture transfer, the associated condensation risk and the energy consumption for seven biobased materials and polyurethane for a building-like cubicle are analysed. The performance is evaluated combining a software application to model the cubicle (EnergyPlus) and a tool to optimize its performance (jEPlus). The novelty of this optimization approach is to include and evaluate the effects of moisture in these insulation materials, taking into account the mass transfer through the different layers and the evaporation of the different materials. This methodology helps optimise the insulation type and thickness verifying the condensation risk, preventing the deterioration of the materials. The total cost of the different solutions is quantified, and the environmental impact is determined using the life cycle assessment methodology. The effect of climate conditions and the envelope configuration, as well as the risk of condensation, are quantified. The results show that cost and environmental impact can be reduced if bio-based materials are used instead of conventional ones, especially in semiarid climates. Condensation risk occurs for large thicknesses and in humid climates. In our case studies, hemp offered the most balanced solution.The authors would like to acknowledge financial support from the Spanish Government (CTQ2016-77968-C3-1-P, ENE2015-64117-C5-1-R, ENE2015-64117-C5-3-R, MINECO/FEDER, UE). The research leading to these results has received funding from the European Commission Seventh Framework Programme under grant agreement no. PIRSES-GA-2013-610692 (INNOSTORAGE). This project has received funding the European Union's Horizon 2020 Research and Innovation Program under grant agreement No 657466 (INPATH-TES). This article has been possible with the support of the Ministerio de Economía y Competitividad (MINECO) and the Universitat Rovira i Virgili (URV) (FJCI-2016-28789). Authors would like to acknowledge the Brazilian Government for their support by the CNPq (National Council for Scientific and Technological Development). M.P. would like to thank the Brazilian Education Ministry for the financial support received under the PNPD/Capes fellowship. L.F.C. would like to thank the Catalan Government for the quality accreditation given to her research group GREA (2014 SGR 123)

    Biodegradable and compostable alternatives to conventional plastics

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2009 The Royal Society.Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.EPSR

    Filling of mater-BI with nanoclays to enhance the biofilm rigidity

    Get PDF
    We investigated the efficacy of several nanoclays (halloysite, sepiolite and laponite) as nanofillers for Mater-Bi, which is a commercial bioplastic extensively used within food packaging applications. The preparation of Mater-Bi/nanoclay nanocomposite films was easily achieved by means of the solvent casting method from dichloroethane. The prepared bio-nanocomposites were characterized by dynamic mechanical analysis (DMA) in order to explore the effect of the addition of the nanoclays on the mechanical behavior of the Mater-Bi-based films. Tensile tests found that filling Mater-Bi with halloysite induced the most significant improvement of the mechanical performances under traction force, while DMA measurements under the oscillatory regime showed that the polymer glass transition was not affected by the addition of the nanoclay. The tensile properties of the Mater-Bi/halloysite nanotube (HNT) films were competitive compared to those of traditional petroleum plastics in terms of the elastic modulus and stress at the breaking point. Both the mechanical response to the temperature and the tensile properties make the bio-nanocomposites appropriate for food packaging and smart coating purposes. Here, we report a preliminary study of the development of sustainable hybrid materials that could be employed in numerous industrial and technological applications within materials science and pharmaceutics
    corecore