1,315,702 research outputs found
Recommended from our members
Site-Directed Mutagenesis and Site-Specific Binding Analysis of Calmodulin (CaM)
Calcium signaling is a major regulatory system in cells and a crucial part of cell biology. An
important element in the decoding of intracellular calcium concentration into downstream
processes is the ubiquitous and highly conserved calcium binding protein calmodulin (CaM)
which can bind to and modulate the function of hundreds of different target proteins,
regulating such processes as synaptic plasticity, gene expression and electrical signaling. The
biophysical characterization of binding affinity and cooperative interactions between each of
calmodulin’s four EF-hand calcium binding sites is essential for understanding calcium
signaling. Highly conserved amino acid sequence differences in the ion binding loops of the
EF-hands give each site unique affinity for calcium. EF-hands are almost always found in
pairs, where binding to one of the sites affects the affinity of the paired site. We have used
spectroscopy to measure site-specific binding in each of the paired binding sites in the CaM
N-lobe, along with site-directed mutagenesis, to study the contributions of individual amino
acids to the ion binding affinity in the mutated site (cis effects) and in the neighboring site
(trans effects). Of the twelve amino acids in the binding loops, five are different between Site
1 and Site 2. We constructed proteins with substituted individual residues from Site 1 to Site
2. CaM with the full Site 1 sequence in both Site 1 and Site 2 shows significant changes in
affinity and binding characteristics in both sites. To investigate the contributions of the
individual amino acid differences, we made intermediate mutants containing individual amino
acid changes in Site 2. The cis-effects of the intermediate mutations on the mutated site, Site
2, seem to be independent and additive, whereas the trans-effects on the non-mutated Site 1
showed unexpected dependence on combinations of amino acid changes in Site 2.Neuroscienc
Recommended from our members
Evolutionary Covariant Positions within Calmodulin EF-hand Sequences Promote Ligand Binding
Intracellular calcium signaling is an essential regulatory mechanism through calcium-mediated signal transduction pathways involved in many cell processes, such as exocytosis, motility, apoptosis, excitability, transcription, and muscle contraction. The calcium-binding, ubiquitous, and highly conserved protein calmodulin (CaM) is an important regulator of hundreds of target proteins involved in cellular calcium signaling. CaM comprises of two pairs of EF-hand calcium-binding domains and these structural regions of the protein are highly conserved. Studying the molecular mechanisms underlying the binding of calcium to the EF-hands of CaM is critical in understanding the calcium-mediated cellular processes and how improper binding of calcium can lead to various human pathologies. Previous site-specific binding measurements indicate that each of the four EF-hands of CaM have distinct affinities for calcium. In this study, we have utilized covariance patterns and site-specific mutagenesis to analyze calcium affinity in the two EF-hands of the N-lobe of CaM in order to determine the specific amino acids that are evolutionarily conserved to coordinate calcium. The specific amino acids in CaM that we studied are theorized to coevolve, which means that in their protein coding genes, when a mutation occurs, a compensatory mutation is likely to follow to conserve structure and function of CaM. Since CaM is a highly conserved protein with a known structure, covariance analyses will help in understanding which amino acid contacts are most important for the coordination of calcium in the EF-hands of CaM and to determine which amino acids are under evolutionary constraint. Covariance algorithms, multiple sequence analyses and accompanied protein structure analyses were used to identify the two high scoring amino acid pairs in the N-lobe EF-hands: positions 22 and 24 in EF-hand site 1 and positions 58 and 60 in EF-hand site 2. The amino acids in these locations were mutated and accompanied calcium binding was measured to better understand the effects of the mutations on calcium binding. We have found that both the D24N mutation in site 1 and the D58N mutation in site 2 disrupt binding likely due to the removal of a necessary aspartate in the binding site. However, the combined D58N and N60D mutations restore binding in site 2 by providing the necessary aspartate in the covariant location. The N60D mutation by itself has little impact on calcium binding in site 2. Therefore, it is evident that evolution conserves at least one aspartate in the covariant positions of the binding site and the presence of two aspartates in the covariant positions of the binding site has little affect on calcium binding. We are currently studying the covariant positions in site 1 and future work includes structurally analyzing the covariant positions in the C-lobe of CaM and studying covariance patterns of other calcium-binding proteins with EF-hand binding domains.Biochemistr
Anion transport inhibitor binding to band 3 in red blood cell membranes.
The inhibitor of anion exchange 4,4'-dibenzoamido-2,2'-disulfonic stilbene (DBDS) binds to band 3, the anion transport protein in human red cell ghost membranes, and undergoes a large increase in fluorescence intensity when bound to band 3. Equilibrium binding studies performed in the absence of transportable anions show that DBDS binds to both a class of high-affinity (65 nM) and low-affinity (820 nM) sites with stoichiometry equivalent to 1.6 nmol/mg ghost protein for each site, which is consistent with one DBDS site on each band 3 monomer. The kinetics of DBDS binding were studied both by stopped-flow and temperature-jump experiments. The stopped-flow data indicate that DBDS binding to the apparent high-affinity site involves association with a low-affinity site (3 microM) followed by a slow (4 s-1) conformational change that locks the DBDS molecule in place. A detailed, quantitative fit of the temperature-jump data to several binding mechanisms supports a sequential-binding model, in which a first DBDS molecule binds to one monomer and induces a conformational change. A second DBDS molecule then binds to the second monomer. If the two monomers are assumed to be initially identical, thermodynamic characterization of the binding sites shows that the conformational change induces an interaction between the two monomers that modifies the characteristics of the second DBDS binding site
Cyclic nucleotide specificity of the activator and catalytic sites of a cGMP-stimulated cGMP phosphodiesterase from Dictyostelium discoideum
The cellular slime mold Dictyostelium discoideum has an intracellular phosphodiesterase which specifically hydrolyzes cGMP. The enzyme is activated by low cGMP concentrations, and is involved in the reduction of chemoattractant-mediated elevations of cGMP levels. The interaction of 20 cGMP derivatives with the activator site and with the catalytic site of the enzyme has been investigated. Binding of cGMP to the activator site is strongly reduced (more than 80-fold) if cGMP is no longer able to form a hydrogen bond at N2H2 or O2’H. Modifications at N7, C8, O3’ and O5’ induce only a small reduction of binding affinity. A cyclic phosphate structure, as well as a negatively charged oxygen atom at phosphorus, are essential to obtain activation of the enzyme. Substitution of the axial exocyclic oxygen atom by sulphur is tolerated; modification of the equatorial oxygen atom reduces the binding activity of cGMP to the activator site by 90-fold.
Binding of cGMP to the catalytic site is strongly reduced if cGMP is modified at N1H, C6O, C8 and O3’, while modifications at N2H2, N3, N7, O2’H, and O5’ have minor effects. Both exocyclic oxygen atoms are important to obtain binding of cGMP to the catalytic site. The results indicate that activation of the enzyme by cGMP and hydrolysis of cGMP occur at different sites of the enzyme. cGMP is recognized at these sites by different types of molecular interaction between cGMP and the protein.
cGMP derivatives at concentrations which saturate the activator site do not induce the same degree of activation of the enzyme (activation 2.3-6.6-fold). The binding affinities of the analogues for the activator site and their maximal activation are not correlated. Our results suggest that the enzyme is activated because cGMP bound to the activator site stabilizes a state of the enzyme which has a higher affinity for cGMP at the catalytic site.
Targets for the MalI repressor at the divergent Escherichia coliK-12malX-malI promoters
Random mutagenesis has been used to identify the target DNA sites for the MalI repressor at the divergent Escherichia coli K-12 malX-malI promoters. The malX promoter is repressed by MalI binding to a DNA site located from position -24 to position -9, upstream of the malX promoter transcript start. The malI promoter is repressed by MalI binding from position +3 to position +18, downstream of the malI transcript start. MalI binding at the malI promoter target is not required for repression of the malX promoter. Similarly, MalI binding at the malX promoter target is not required for repression of the malI. Although the malX and malI promoters are regulated by a single DNA site for cyclic AMP receptor protein, they function independently and each is repressed by MalI binding to a different independent operator site
Adaptive evolution of transcription factor binding sites
The regulation of a gene depends on the binding of transcription factors to
specific sites located in the regulatory region of the gene. The generation of
these binding sites and of cooperativity between them are essential building
blocks in the evolution of complex regulatory networks. We study a theoretical
model for the sequence evolution of binding sites by point mutations. The
approach is based on biophysical models for the binding of transcription
factors to DNA. Hence we derive empirically grounded fitness landscapes, which
enter a population genetics model including mutations, genetic drift, and
selection. We show that the selection for factor binding generically leads to
specific correlations between nucleotide frequencies at different positions of
a binding site. We demonstrate the possibility of rapid adaptive evolution
generating a new binding site for a given transcription factor by point
mutations. The evolutionary time required is estimated in terms of the neutral
(background) mutation rate, the selection coefficient, and the effective
population size. The efficiency of binding site formation is seen to depend on
two joint conditions: the binding site motif must be short enough and the
promoter region must be long enough. These constraints on promoter architecture
are indeed seen in eukaryotic systems. Furthermore, we analyse the adaptive
evolution of genetic switches and of signal integration through binding
cooperativity between different sites. Experimental tests of this picture
involving the statistics of polymorphisms and phylogenies of sites are
discussed.Comment: published versio
PocketMatch: A new algorithm to compare binding sites in protein structures
Background: Recognizing similarities and deriving relationships among protein molecules is a fundamental
requirement in present-day biology. Similarities can be present at various levels which can be detected through comparison of protein sequences or their structural folds. In some cases similarities obscure at these levels could be present merely in the substructures at their binding sites. Inferring functional similarities between protein molecules by comparing their binding sites is still largely exploratory and not as yet a routine protocol. One of
the main reasons for this is the limitation in the choice of appropriate analytical tools that can compare binding sites with high sensitivity. To benefit from the enormous amount of structural data that is being rapidly accumulated, it is essential to have high throughput tools that enable large scale binding site comparison.

Results: Here we present a new algorithm PocketMatch for comparison of binding sites in a frame invariant
manner. Each binding site is represented by 90 lists of sorted distances capturing shape and chemical nature of the site. The sorted arrays are then aligned using an incremental alignment method and scored to obtain PMScores for pairs of sites. A comprehensive sensitivity analysis and an extensive validation of the algorithm have been carried out. Perturbation studies where the geometry of a given site was retained but the residue types were changed randomly, indicated that chance similarities were virtually non-existent. Our analysis also demonstrates that shape information alone is insufficient to discriminate between diverse binding sites, unless
combined with chemical nature of amino acids.

Conclusions: A new algorithm has been developed to compare binding sites in accurate, efficient and
high-throughput manner. Though the representation used is conceptually simplistic, we demonstrate that along
with the new alignment strategy used, it is sufficient to enable binding comparison with high sensitivity. Novel methodology has also been presented for validating the algorithm for accuracy and sensitivity with respect to geometry and chemical nature of the site. The method is also fast and takes about 1/250th second for one comparison on a single processor. A parallel version on BlueGene has also been implemented
- …
