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ABSTRACT 

 

Calcium signaling is a major regulatory system in cells and a crucial part of cell biology.  An 

important element in the decoding of intracellular calcium concentration into downstream 

processes is the ubiquitous and highly conserved calcium binding protein calmodulin (CaM) 

which can bind to and modulate the function of hundreds of different target proteins, 

regulating such processes as synaptic plasticity, gene expression and electrical signaling.  The 

biophysical characterization of binding affinity and cooperative interactions between each of 

calmodulin’s four EF-hand calcium binding sites is essential for understanding calcium 

signaling. Highly conserved amino acid sequence differences in the ion binding loops of the 

EF-hands give each site unique affinity for calcium. EF-hands are almost always found in 

pairs, where binding to one of the sites affects the affinity of the paired site. We have used 

spectroscopy to measure site-specific binding in each of the paired binding sites in the CaM 

N-lobe, along with site-directed mutagenesis, to study the contributions of individual amino 

acids to the ion binding affinity in the mutated site (cis effects) and in the neighboring site 

(trans effects). Of the twelve amino acids in the binding loops, five are different between Site 

1 and Site 2.  We constructed proteins with substituted individual residues from Site 1 to Site 

2.  CaM with the full Site 1 sequence in both Site 1 and Site 2 shows significant changes in 

affinity and binding characteristics in both sites. To investigate the contributions of the 

individual amino acid differences, we made intermediate mutants containing individual amino 

acid changes in Site 2. The cis-effects of the intermediate mutations on the mutated site, Site 

2, seem to be independent and additive, whereas the trans-effects on the non-mutated Site 1 

showed unexpected dependence on combinations of amino acid changes in Site 2. 
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1. IMPORTANCE OF CALMODULIN 

 

1.1 What is Calmodulin?  

 

 It is late at night, but you are awake studying for tomorrow’s neuroscience exam in 

university. You are quite tired, but continue to quiz yourself on the structures of the brain and 

ask yourself, ‘What was the function of that region of the brain, again?’ For a moment, you 

don’t rack your brain for the answer to your quiz question. Rather, you pause, and think about 

the act of learning and remembering. You are in a neuroscience class, after all. Your mind 

slowly lingers away from tomorrow’s quiz terms, and you begin to think about the concept of 

learning and memory. Isn’t it amazing that the brain can recall information that was 

previously learned? There was once a time when you did not know that piece of information. 

It did exist; however, you were simply not aware of it. And after repeating the information to 

yourself a few times, you came to know and understand the information better and better. 

How is it that the brain is able to remember information that it was once told?  

 It is known that the protein calmodulin is involved in this process of remembering, as 

calmodulin is well known to be linked to learning and memory (Giese and Mizuno, 2013). 

But what exactly is “calmodulin?” Calmodulin is a protein that is abundant in all eukaryotic 

cells, and mediates many important processes in the body. Some of these processes include 

synaptic plasticity (related to learning and memory), smooth muscle contraction, metabolism, 

inflammation, ion channel regulation, and apoptosis. Evidently, calmodulin has many 

functions, some of which will be explored in this paper. But of particular interest to myself 

and the Aldrich laboratory, is calmodulin’s ability to act as a “calcium sensor,” because it is a 
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calcium binding protein. Calcium binding proteins act by binding to calcium, which 

“activates” them, allowing them to exert their downstream effects such as binding onto other 

proteins. What this means, is that calmodulin acts in a signal transduction system, where the 

influx of the second messenger calcium ions into a cell cause the binding of calcium to 

calmodulin, which causes this complex to be active and bind to downstream effector proteins. 

However, it has been found that calmodulin’s affinity for calcium changes upon the alteration 

of amino acids in the calcium binding sites of calmodulin. These studies were implemented in 

the Aldrich lab. We employed a methodical mutation study method, known as “site specific 

and site directed mutagenesis” to create the exact, desired amino acid changes in the wild type 

calmodulin protein. The data from these studies was gathered, and will be discussed later in 

the paper. The importance of this research is to understand the molecular design of 

calmodulin, to hopefully assist with the creation of medicines that can bind to calmodulin and 

modulate its effects in relation to learning and memory.  

 

1.2 Synaptic Plasticity   

 

 Calmodulin is a protein, which means it is a long chain of amino acids folded into a 

three-dimensional structure that is able to bind to other molecules and proteins, and exert 

changes in the cell. This protein is so unique, because it is able to bind to hundreds of other 

proteins, which means that it can be involved in many processes in the cell (Hoeflich and 

Ikura, 2002). However, calmodulin is famously known for its involvement in learning and 

memory.  
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 In neuroscience, learning can be thought of as strengthening synapses due to patterns 

in activity that an individual executes (Martin et al., 2000). This is called long-term 

potentiation, or LTP (Bliss and Collingridge, 2003). When activities are repeated, the strength 

of the signal between two neurons in the brain increases as a long-term consequence. 

However, if the pattern of activity is halted, then there is no more communication between the 

two neurons, which subsequently decreases the signal transmission between the two neurons. 

This is called long-term depression, and is the opposite of what occurs during long-term 

potentiation. What has just been described reflects the brain’s magnificent power to rewire 

itself, strengthening connections in the brain between neurons that are being used and 

weakening connections that are not being used. The brain allows the level of the chemical 

signal that is released between the synapses of neurons to change, which is known as synaptic 

plasticity (Bliss and Collingridge, 1993). This is the molecular basis of learning. 

 

1.3 CaM Kinase Cascade 

 

Now, how does calmodulin come in to play? For example, we can examine the CaM 

kinase cascade, which is involved in memory consolidation (Giese and Mizuno, 2013). As 

was stated earlier, calmodulin derives its importance from its ability to bind to other proteins 

in the cell and exert changes. In the CaM kinase cascade, the postsynaptic neuron receives the 

signal from the presynaptic neuron. This leads to the activation of NMDA (N-methyl-D-

aspartate) receptors on the surface of the postsynaptic neuron. The NMDA receptor is a Ca2+ 

ion channel that binds the glutamate that was released by the presynaptic neuron. Thus, when 

glutamate binds to the NMDA receptor, the channel opens and allows an influx of cations into 
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the cell, which then dislodges ions such as Mg2+ and Zn2+ that are blocking the pore in the 

NMDA ion channel. Once these ions are removed from the pore, Ca2+ ions flow into the cell. 

Once the calcium ions are in the cell, they bind to calmodulin. This activates calmodulin, 

which then allows the calcium-calmodulin complex to bind to kinases, such as CaMKK, 

which then binds to other kinases CaMKI, CaMKIV, etc. Then, CaMKIV phosphorylates 

other proteins, such as CREB and CBP in the nucleus of the cell, which causes gene 

transcription to occur. Then, these genes translated into proteins that specifically target 

activated synapses, and lead to memory solidification (Giese and Mizuno, 2013).  

 

1.4 AMPA Receptors 

 

 Another example of a calmodulin pathway related to synaptic plasticity involves the 

insertion of new AMPA receptors in the membrane of the postsynaptic neuron (Lu et al., 

2001). This pathway involves the concept of long-term potentiation. When glycine binds to 

postsynaptic NMDA receptors, an influx of Ca2+ results. This calcium influx leads to the 

insertion of AMPA receptors in the membrane, which subsequently allows for the cell the 

experience an even stronger signal from the presynaptic neuron in the long-term (Lu et al., 

2001). This vivid demonstration of synaptic plasticity in action is a molecular description of 

how learning takes place.  

 Furthermore, calmodulin is involved in the insertion of AMPA receptors into the 

postsynaptic membrane through Ca2+/calmodulin-dependent protein kinase II, or CaM kinase 

II (Stefan et al., 2008). In the molecular cascade, CaM kinase II phosphorylates AMPA 

channels at a particular amino acid (serine 831). This increases the conductance of the AMPA 
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channels that bind glutamate, which means that the channels are more sensitive to a signal. 

Subsequently, long-term potentiation and increased synaptic strength are the results (Lisman 

et al., 2002). Furthermore, links have been found between improper CaM kinase II regulation 

and Alzheimer’s disease, which makes the study of calmodulin and CaM kinase II is 

medically relevant (Yamaguchi, 2005).  

  

2. MEDICAL RELEVANCE OF CALMODULIN 

 

2.1 Alzheimer’s Disease 

 

Alzheimer’s disease, a gradual mental deterioration that typically occurs in older 

individuals, results in patient forgetfulness and memory loss (Khachaturian, 1985). This 

disease is scientifically associated with amyloid-b plaques and neurofibrillary tangles. 

Amyloid-b plaques are aggregations of protein fragments in neurons, which are toxic to brain 

cells. Neurofibrillary tangles are fibers of hyperphosphorylated tau protein, which are 

involved with the microtubules in nerve cells. Microtubules are used to shuttle materials 

around the cell from one place to another.  

In Alzheimer’s disease, the accumulation of amyloid-b plaques between neurons, as 

well as the accumulation of neurofibrillary tangles within neurons, overwhelms the body and 

results in the typical Alzheimer’s disease symptoms, such as confusion and memory loss. It 

has been experimentally confirmed that certain types of calmodulin binding proteins, such as 

amyloid-b protein precursor, b-secretase, presenilin-1, ADAM10, etc., are involved in the 

formation of amyloid-b plaques (O’Day et al., 2015).  Therefore, the more we understand 
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about the calmodulin protein, the more we can learn about its relevance to Alzheimer’s 

disease. This will put scientists in a better position to devise a medication that can act with 

calmodulin, or its binding proteins, in an effort to try and combat the symptoms of 

Alzheimer’s disease.   

 

2.2 Long-QT Syndrome 

 

 Another medical disease involved with the protein calmodulin is long-QT syndrome. 

In this disease, the patient’s heart beats arhythmically, quickly, and chaotically (Schwarts, 

2005). Because of this irregular heartbeat, the patient may suddenly die. Long-QT syndrome 

is named as such because when a heartbeat wave is examined on an electrocardiogram, there 

is a section of the curve called the QT interval. In long QT syndrome, the QT interval in the 

electrocardiogram is elongated, and thus this disease is named long-QT syndrome (Schwartz, 

2005). The symptoms of long-QT syndrome include fainting (especially during stressful or 

situations), seizures, or sudden death. Long-QT is hereditary, and is more likely to occur in 

individuals that have a family history of the disease (Schwartz, 2005). Additionally, the risk 

factors for the disease include liver or renal dysfunction, cardiovascular disease, or electrolyte 

imbalances. In consideration of the pathophysiology of long-QT syndrome, it is found that all 

types of long-QT syndrome are linked to an abnormal repolarization of the heart. As a result, 

the refractory period of the heart muscle cells is different, and leads to early after-

depolarizations in the cells, which leads to ventricular arrhythmias. The molecular mechanism 

for this behavior has been identified, because certain types of long-QT are associated with 

mutations in calmodulin. When there are mutations in calmodulin, then the inactivation of L-
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type calcium channels and currents may occur. Specifically, these L-type calcium channels 

are held open, or reopened, during the plateau phase of the cardiac action potential. 

Subsequently, this leads to the sustained flow of calcium into the cardiac cell, which leads to 

arrhythmic behavior in ventricular myocytes, or heart cells (Limpitikul et al., 2014). And as 

stated before, it is more likely for long-QT syndrome to be exhibited, or result in the sudden 

death of a person, when the individual is exercising or emotionally excited. Since adrenaline 

activates the L-type calcium channels, which are already impaired with respect to 

repolarization, this puts a huge strain on the heart muscle, and leads to sudden patient death.  

 Mutations in calmodulin, such as the recently discovered D132H mutation, can lead to 

long-QT syndrome by affecting the calcium current in human cardiac cells. There are many 

case studies of young infants or toddler patients who went into cardiogenic shock or cardiac 

arrest, only later to resuscitated and discover, after genetic testing, that they had long-QT 

syndrome (Pipilas et al., 2016). In this ‘calmodulinopathy,’ the calmodulin mutations result in 

a calmodulin where calcium can only weakly bind to the C domain of the protein. 

Additionally, calmodulin mutations result in some structural malformations of the protein 

itself. This makes sense, because protein tertiary structure is dependent upon its secondary 

and primary structures, which are dependent upon the amino acids sequence. When 

calmodulin can only weakly bind to calcium, then the calcium/calmodulin complex is not as 

effective in activating other target enzymes. The voltage gated calcium channels are impaired, 

and Ca2+ dependent inactivation of voltage-gated Ca2+ current is impaired as well, leading to 

long-QT syndrome (Pipilas et al., 2016).  
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2.3 Calmodulin as a Drug Target  

 

The above discussions of calmodulin’s associations with medical diseases such as 

Alzheimer’s and Long QT syndrome, are what make calmodulin an interesting therapeutic 

target. For example, research has been done in an effort to create a drug that targets CaM 

kinase II (Banyasz et al., 2011). The traditional method for dealing with cardiac arrhythmias 

is to implant a cardioverter defibrillator. Currently, this is considered as the most effective 

way to deal with cardiac arrhythmias. However, it would be very clinically useful to have 

medications to treat cardiac arrhythmias, because there are certain cardiac arrhythmias that 

cannot be treated with implantable cardioverter defibrillators. There are some medications 

that target cardiac ion channels, however there has only been moderate success with these 

treatments, some of which have been found to actually increase mortality. Thus, researchers 

have begun to look at molecular drug targets that act upstream of ion channels, such as CaM 

kinase II (Banyasz et al., 2011). If CaM kinase II is inhibited, then this can be a treatment for 

several types of heart diseases. This is because high CaM kinase II levels have been found in 

individuals who have failing hearts (Banyasz et al., 2011). Additionally, CaM kinase II plays 

a key role in the regulation of the heart. If medications can be constructed to work with CaM 

kinase II, a protein the binds calmodulin, then perhaps they can be used as a treatment for 

certain heart conditions.  

 The protein calmodulin shows tremendous promise for being a drug target. 

Calmodulin is involved in many processes in the body, and is found in many locations within 

the body, such as in the brain and heart. Calmodulin has over 200 binding partners, which 

reflects the sheer magnitude of importance for the molecule (Hoeflich and Ikura, 2002). Many 
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target proteins and enzyme are only able to function once they are bound to calmodulin. 

Therefore, it is very worthwhile to better understand this unique protein. If additional 

information about calmodulin can be uncovered, then scientists can not only better understand 

the molecule, but also be in a better position to devise drugs and medicines that act on 

calmodulin to modulate its effects.       

   

3. INTRODUCTION  

 

3.1 Rational and Purpose 

 

 Previously, the medical and scientific importance of calmodulin was examined. This 

discussion set the stage for the importance of the research that the other members of the 

Aldrich lab and I conducted. The overall goal was to better understand how individual amino 

acids contribute to the calcium affinity of the calmodulin protein. By altering certain amino 

acids of calmodulin, the binding affinity of the calcium binding site would change. This 

information allowed us researchers to understand the importance of certain amino acids in the 

protein.   

The purpose of this research is to examine how amino acid sequences, and adjacent 

sequences as well, can affect binding. The primary technique used in this research, known as 

site directed mutagenesis, involves altering the gene for calmodulin at specific sites. This 

technique is very powerful, as it allows for the creation of whatever protein mutant is desired. 

By creating chimeras and mutated versions of the calmodulin protein, the Ca2+ binding 

affinity of the protein is altered in very unique and specific ways. In taking a detailed 
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approach with site specific mutagenesis, we can be thorough in our understanding of the CaM 

protein.  

 

3.2 Calmodulin Structure  

 

The calmodulin protein has a very symmetrical structure. It has four calcium binding 

sites, two of which are localized towards the N lobe, and two of which are localized towards 

the C lobe. Between the N lobe and C lobe of the protein (which are two very distinct halves), 

lies a middle linker region. Each of calmodulin’s four binding sites, or EF hands, is able to 

bind a Ca2+ ion (Figure 1). All of these four EF hands are actually very similar in sequence to 

one another. Thus, the specific amino acid differences between the four EF hand binding 

loops are of particular interest in our research. Amino acids are known to have very unique 

properties, and thus when altered, could affect the entire protein function as a whole. In our 

research, we are only considering the N lobe half of calmodulin for now. This is possible to 

do because the N lobe and the C lobe form separate, distinct globular shapes when the protein 

is in its conformational shape in the tertiary structure. Thus, all of the mutants that will be 

listed in this research paper refer to mutations that were made in the N lobe of calmodulin.  

 

3.3 Background Information 

 

The background behind this project has mainly to do with the fact that calmodulin 

binding assays have previously been done and explored. However, most of these assays 

involve examining the total binding of calmodulin to Ca2+ (Linse et al., 1990). This means 
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that the measurements obtained involve the entire calmodulin protein, and act as only an 

effective summation of the binding affinities for all the four individual binding sites2. 

Although the curves that are generated with these methods appear to be scientifically sound, 

they are not very representative of the calmodulin protein. This is because each of the four 

calmodulin binding sites has its own unique affinity for Ca2+, based on the amino acid 

sequence context. Each of the four binding sites has its own unique apparent affinity, and this 

cannot be represented on a curve that depicts calmodulin total binding. The previous total 

binding curves are insufficient, because the association constants and cooperativity factors 

vary by several orders of magnitude. Thus, the need for site specific binding assays of the 

protein calmodulin emerged, and our lab started to conduct site-specific measurements of 

terbium and calcium binding to calmodulin and calmodulin fragments (Greeson-Bernier et al., 

2013). 

 

4 MATERIALS AND METHODS 

 

4.1 CaM Expression and Purification 

 

To conduct the site directed mutagenesis itself, polymerase chain reaction (PCR) was 

used. Then, to generate the desired mutated calmodulin protein, a bacterial expression system 

was used. The gene sequence for N lobe of the protein CaM was cloned into an expression 

vector. The CaM protein itself was then expressed in bacterial BL21 cells, which were grown 

in LB media. After an initial ammonium sulfate purification, high performance liquid 

chromatography, or HPLC, was used to purify the protein. Calmodulin was isolated by using 
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protein purification techniques. The primary techniques utilized include ammonium sulfate 

washes, and purification using high performance liquid chromatography (HPLC). The types 

of columns used during the protein purification process were dependent upon how well the 

previous column was able to separate the protein. Some columns that were used include 

Desalt, Anion Exchange, C18, and Superdex. Once the desired protein was isolated, a gel was 

run to confirm the purity of the protein sample, and to assure that there were no contaminants. 

After a Final Desalt column, the CaM was stored in 5 mM HEPES Additionally, gels are 

usually run during the protein purification process (between running HPLC columns), to 

check for protein purity through the procedure. The concentration of protein was determined 

using absorbance spectroscopy, specifically looking at 280 nm absorbance. 

 

4.2 Solutions 

 

Teflon vials were used to store the lanthanide (terbium ion, Tb3+) solutions. Dilutions 

of the lanthanide solutions were made, ranging from 1µM to 10 mM. Additionally, dilutions 

of HCl solutions were also prepared for the experiment, and stored in Teflon vials as well. 

The base solution for the experiments is an MES solution, which contains 2-(N-

morpholino)ethanesulfonic acid, 6 mM KCl, 136 mM KOH, and 5 mM HEPES.  

 

4.3 Site-Specific Binding Measurements 

 

A fluorometer (Photon Technologies International) was used to perform site-specific 

binding measurements. The light excitation source was a Xenon flash lamp, which pulsed 
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light at a frequency of 100 Hz. Light of 292 nm was used to excite the tryptophan that was 

engineered into CaM, which would then transfer energy to the bound Tb3+ ions. The energy 

transfer is localized to the site nearby the tryptophan. An average of 10,000 light pulses were 

emitted per trial.  

The protein binding affinity was measured by conducting site specific binding 

experiments with terbium ions, which are known to act as excellent calcium substitutes for 

calmodulin (Martin and Richardson, 1979). The ability to use terbium ions as a replacement 

for calcium ions is extremely useful, because terbium ions are luminescent, allowing their 

fluorescent decay to be registered by proper instruments.  

This project is unique in that terbium ions (Tb3+ ions) can serve as substitutes for Ca2+ 

ions. This has been discovered in prior research, and is widely known and accepted (Martin 

and Richardson, 1979). Terbium ions have luminescent properties, which allows for signals to 

be measured. This is extremely convenient for this project, because Ca2+ ions, which normally 

bind to calmodulin, do not have luminescent properties. Thus, since calmodulin can bind Tb3+ 

as a substitute for Ca2+, the luminescent properties of Tb3+ can be utilized in visualizing 

signals. 

While the mutated CaM protein was being generated, a noninvasive tryptophan 

residue was engineered into the amino acid sequence for only one binding site in the 

calmodulin protein. In the spectrofluorometer, light with a wavelength of 292 nanometers is 

emitted, which excites this tryptophan residue. Then, this tryptophan residue transfers its 

energy to a nearby Tb3+ ion, which is in that particular binding site of calmodulin where the 

tryptophan residue was engineered. Then, the Tb3+ emits light with a wavelength of 545 

nanometers, which is then detected by the spectrofluorometer. The mathematical analysis 
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program that is used in our lab to analyze the data is able to separate the two different signals 

that the spectrofluorometer received: one signal from the Tb3+ that is bound to the protein, and 

another signal from the Tb3+ that is free in solution. In summary, the program can separate the 

“bound” signal, from the “unbound” signal.  

 

4.4 Exponential Decay Fitting 

 

During each Terbium titration experiment (each “trial”), a collection of exponential 

decays are generated. These decays are then fit using the Markov Chain Monte Carlo 

(MCMC) method. The data that is collected during the experiment has two components: the 

signal from the Tb3+ that is bound to the CaM, and the signal from free Tb3+ in solution (or, 

“un-bound”). The former is known as the “slow component” meaning that the signal decays 

slowly, while the latter is known as the “fast component,” meaning that the signal decays 

quickly. Because there are these two components, a double fitted exponential results. The 

MCMC is able to effectively separate these two differing signals, allowing for the generation 

of sigmoidal dose-response curves. The dose response curves were generated using the 

amplitudes of the terbium luminescence decay at increasing terbium concentrations.  

The raw data that is generated with the PTI machine is a graph that depicts 

concentration dependent site specific Tb3+ luminescent decays. These graphs are luminescent 

decays over time. Then, this data is analyzed using an algorithm (Markov Chain Monte Carlo) 

and normalized amplitude curves are generated. These curves are sigmoidal, which exhibit the 

cooperative binding of calmodulin (Valeyev et al., 2008). Cooperative binding is when the 

protein binds to a substrate, which increases the protein’s affinity to bind more substrate in the 
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other active sites. The axes on these curves have Normalized Amplitude (on the Y axis) as a 

function of Added [Tb3+] (on the X axis).  

The differences between these curves for each of the mutants was then analyzed and 

compared. By methodically mutating specific amino acids in the EF hand structures of the N 

lobe, we can determine the contribution of each amino acid to Ca2+ binding. 

 

4.5 Definition of Wild Type 

 

Most of our lab’s research is concerned with creating calmodulin mutants, also known 

as chimeras. Our lab systematically chooses which chimeras to make. We define the “wild 

type” calmodulin as having no amino acid changes from the wild type calmodulin sequence, 

except, with a noninvasive tryptophan residue inserted into the amino acid sequence at 

position 7 of the EF hand binding loop. This was done so that measurements could be made 

with the terbium ions. Without the tryptophan residue, a signal from the bound terbium cannot 

be recorded. This is because the bound terbium would emit the same wavelength of light as 

the free terbium in solution, because the tryptophan would not be there to excite the bound 

terbium. This experiment relies on the fact that the decay time constant shifts upon terbium 

binding (Figure 2). 

 

4.6 Chimera Nomenclature 

 

Because so many similar, but slightly different mutants are created for this project, it 

is very important to convey relevant information when naming the chimera mutants. For the 
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nomenclature of the chimeras, the first EF hand of calmodulin is called Site 1, the second EF 

hand of calmodulin is called Site 2. Also, our lab calls the actual amino acid sequence in the 

first EF hand in calmodulin Sequence A, and the sequence in the second EF hand in 

calmodulin Sequence B. As stated previously, only the N lobe half of calmodulin is being 

considered in our current research, and exploration of the C lobe half of calmodulin is a future 

direction. Thus, using this nomenclature, the wild type for our lab had Sequence A in Site 1 

and Sequence B in Site 2 (Figure 3).  

 

5. RESULTS AND DISCUSSION 

 

5.1 Primary Experiments 

 

Our lab has generated many mutants, but only a select few will be discussed in this 

thesis. For example, our lab has generated a chimera mutant when Sequence A is in both Site 

1 and Site 2. What this means, is that this chimera mutant has the amino acid sequence from 

the first EF hand into both EF hand sites. When using a reporter (tryptophan residue in Site 1), 

this causes a right shift in the terbium binding curve (Figure 4). Our lab’s goal is to now look 

at the amino acid sequence in detail, try to ascertain the reasons behind this shift, and to try to 

determine which amino acids are responsible for this shift. The shift of the graph indicates 

that this particular mutant of calmodulin, where Sequence A is in both Site 1 and Site 2 of the 

protein, has a higher affinity for calmodulin. 

Now, in an effort to try and pinpoint exactly which amino acid, or cluster of amino 

acids, could be responsible for this shift, our lab generated more chimera mutants. Firstly, it is 
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important to note that between the amino acid sequence in the first EF hand (Sequence A) and 

the second EF hand (Sequence B), there are only 5 amino acids that are different. 

Additionally, 3 of these different amino acids are clustered right beside one another in the 

sequence, so we decided to create mutants with this sequence of three amino acids first. To do 

this, we created a chimera that contains Sequence A in Site 1, and Sequence B in Site 2, 

except in Site 2, instead of having the full, wild type Sequence B, we have changed the DFP 

amino acids to TTK. This is because those (TTK) amino acids are the amino acids that are at 

the same position in the EF hand binding loop in Site 1 (Figure 5). In summary, what we have 

done essentially is only taken a portion of Sequence A, and inserted it into Sequence B. Once 

we did binding assays on this mutant protein, we were able to see a shift that nearly 

completely overlapped with the previously discussed mutant (where Sequence A is in both 

Site 1 and Site 2 of the protein). What this suggests, is that one of the three amino acids, or a 

combination of those, is responsible for the shift that was generated in the graph seen earlier.  

In conclusion, the apparent affinities of the N lobe can be changed by mutating the 

adjacent site of the protein, which was seen in the Sequence A chimera. Additionally, the DFP 

to TTK mutation in Sequence B overlaps with the Sequence A chimera, suggesting that the 

affinity is similar.  

Next, we examined the difference due to all 5 residues individually, and determined 

the contribution of each of the five different residues in Site 1 and Site 2. From the group of 

three amino acids, we examined each of the three individually, and made mutants where only 

one of those three is altered at a time.  
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5.1 Secondary Experiments 

 

Two sets of experiments were run in an effort to investigate the individual amino acid 

contributions across paired EF-hands in calmodulin. For the nomenclature, the wild type Site 

1 contains amino acid sequence “a,” while the wild type Site 2 contains amino acid sequence 

“b.” So for example, chimera “aa” is a calmodulin protein that contains the wild type amino 

acid sequence of Site 1 in both Site 1 and Site 2. Moreover, the location of the asterisk “*” 

conveys information about the site that the reporting tryptophan is located in. For example, if 

the asterisk is placed “a*b,” then for this wild type calmodulin chimera, the tryptophan 

reporter is located in Site 1. However, if the asterisk is placed “ab*,” then for this wild type 

calmodulin chimera, the tryptophan reporter is located in Site 2. 

To understand the aa chimera results, special constructs were created. Figure 6 depicts 

the steps that were used to create the chimera mutants. The pink slice in the pictures shows 

that the amino acid at that location matches its counterpart in sequence a. Experiment 1 

examines the three groups of mutations that together make the aa chimera. Experiment 2 

specifically examines the abTTK mutant, by breaking up this group mutation into three 

smaller mutations: abD-T, abF-T, and abP-K.  

The goal of Experiments 1 and 2 are to understand the trans and cis effects of ion 

binding. Using site-directed mutagenesis, the contributions of individual amino acids to the 

ion binding affinity in the mutated site (cis effects) and in the neighboring site (trans effects) 

can be studied. 

In Experiment 1, the cis and trans effects of the aa chimera were deconstructed by 

looking at intermediate constructs (Figure 7). Regarding the trans effects, it was found that 
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positions 9 and 10 play a large role in trans effects, as can be seen because the a*bTTK 

binding curve just about overlaps with the a*a binding curve. Additionally, the N60D 

mutation causes a steeper slope in the graph related to Site 1, which is a sign that this amino 

acid may be related to cooperativity between the sites (Figure 7b). Regarding the cis effects, 

each mutation seemed to be additive, and the summation of the mutations shifted the curves 

enough to sufficiently overlap with the aa* binding curve (Figure 7e). Also, adding a positive 

charge, as in mutation A57K to the binding loop greatly increased the binding. This 

interesting discovery comes unexpectedly, because the binding loop is binding onto a positive 

cation, and it would seem unlikely that adding a positive charge to the binding site would 

increase the binding. Furthermore, adding a negative charge, as in mutation N60D, to a 

directly coordinating position yields little change in binding. Evidently, charges in proteins 

may not behave straightforwardly. Unexpected results may arise, and with the accumulation 

of future research, the reasons behind these unique findings may be identified.  

Experiment 2 studied the cis and trans effects of the TTK mutation. Regarding the 

trans effects, no individual amino acid was able to account for the shifts in the binding curves 

of a*bTTK or a*a. Notably, the opposite phenomena of Site 1 was seen in Site 2, where the 

mutations have a combined action on the neighboring site that is greater than the sum of the 

individual mutations. This synergistic result can be seen in examining the graphs of Figure 

8A, 8B, and 8C, because each of the individual mutations does not shift the binding curve by 

very much. However, the whole mutation is able to shift the binding curve by quite a bit, 

more that the sums of all of the individual mutant binding curve shifts. Regarding the cis 

effects, the single point mutation D-T blocks the binding. This can be seen on the binding 

curve in Figure 8D, because the trace of the curve is misshapen. Additionally, the F-T and P-
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K mutations have relatively small effects, especially when considering the properties of the 

amino acids. The switch from P to K involves a switch from a nonpolar amino acid to one that 

is polar and positively charged. This unique finding is similar to the one that was discussed 

above regarding Experiment 1. Amino acids may behave in ways differently than expected.  

 

6. CONCLUSIONS 

 

6.1 Conclusions 

 

In summary, each amino acid in the binding loop has additive binding contributions to 

its own binding site that it is located in, as well as non-additive binding contributions to its 

neighboring site. As seen in Figure 9A, the intermediate mutations that were constructed each 

contribute a small amount to the overall shape of the aa* chimera binding curve. Thus, these 

amino acids have independent, yet additive roles in controlling cis effects. However, when all 

the mutations are together, as seen in Figure 9B, there is a large shift in the binding curve. 

This suggests that a simultaneous, combination of amino acid mutations is crucial in 

determining trans effects.  

Each amino acid in the calmodulin binding loop plays a role in determining the local 

binding within the site that the amino acid is located within, as well as plays a part in 

indirectly determining the binding in the neighboring site. This notion further reinforces the 

idea that proteins are extremely complex biological units, that function in three-dimensional 

space in unpredictable ways. Through experiments and analysis we can attempt to collect 

information regarding how the protein behaves in certain situations and circumstances. We 
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can then take these findings and try to better understand the whole picture of how the protein 

functions alone, and when bound to other molecules and proteins.  

 

6.2 Future Directions 

 

In the future, our lab plans to investigate the cis effects of combined mutations, dissect 

the cis and trans effect of the bb chimera, study the entire C-lobe EF-hand chimeras, and 

eventually, construct full CaM chimeras with all four of the calcium binding sites. Conducting 

the above experiments will allow for our laboratory to have extreme insight regarding the 

importance of the amino acids and their positions in the calmodulin protein, unparalleled to 

any other laboratory in the world. We will be intimately familiar with the calmodulin protein, 

and will hopefully be able to answer some of the world’s previously unanswered questions. 

 

6.3 Final Statements 

The goal in understanding how the calmodulin protein functions and operates is to be 

able to target calmodulin therapeutically. We hope that one day our findings regarding 

calmodulin binding affinities will be used by scientists and researchers who work in drug-

screening and drug creation. Ideally, our findings will be of use to these other scientists 

around the world, who may be able to successfully devise a medication that can be used to 

heal some of the medical issues that were mentioned in the beginning of the paper, such as 

Alzheimer’s or Long-QT Syndrome.  

Science is a team-based effort, and hopefully our piece will be considered as a useful 

contribution.            
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Figure 1. This is a depiction of the amino acid sequence for the N Lobe half of calmodulin. 
Displayed clearly are Site 1 and Site 2 of the protein.  
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Figure 2. Normalized amplitude verses terbium concentration for the wild type N lobe 
calmodulin. In red, the reporter tryptophan has been engineered in Site 1, while in black, the 
reporter tryptophan has been engineered into Site 2. Some of this data was collected by 
Margaux Miller and Suzanna Bennett.   
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Figure 3. Only Site 2 is depicted here. Highlighted in red are the amino acids that differ 
between Sequence A and Sequence B. The arrows point to the corresponding amino acids in 
Sequence A that are in those same positions.  
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Sequence a chimera is right shifted from wild type N-LobeW 
 

 

Figure 4. Normalized amplitude verses terbium concentration for the Sequence A chimera of 
calmodulin. In red, the wild type is depicted, with the reporter tryptophan engineered into Site 
1. In blue, the mutant is shown, which contains Sequence A in both Site 1 and Site 2 of the 
protein. Some of this data was collected by Margaux Miller and Suzanna Bennett.   
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DFP to TTK mutation in sequence b overlaps the 
sequence a chimera 

 

 

 
Figure 5. Normalized amplitude verses terbium concentration for the DFP to TTK chimera of 
calmodulin. In red, the wild type is depicted, with the reporter tryptophan engineered into Site 
1. In blue, the previous mutant is shown, which contains Sequence A in both Site 1 and Site 2 
of the protein. In purple, the new mutant is shown, which contains the DFP to TTK mutation. 
Some of this data was collected by Margaux Miller and Suzanna Bennett.   
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Figure 6. (A) Experiment 1 outline: Constructs 
made containing just one of the three groups of mutations that together made the aa chimera 
to dissect aa results.  Middle column shows the three constructs used in this initial round of 
experiments with the mutation used noted as a subscript of the Site 2 sequence letter “b”. In 
each construct, the loop position mutated is shown as a pink slice indicate the identity of that 
amino acid matches its counterpart in sequence a. (B) Experiment 2 outline: abTTK results 
prompted further investigation in both sites. Constructs made testing individual contributions 
of D-T, F-T, P-K mutations to each site. Data collected by Margaux Miller and Suzanna 
Bennett.   
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Figure 7. In each of these intermediate constructs, Tb3+-binding was measured in Site 1 (A-
C) and Site 2 (D-F). Following the format in Fig. 2, the mutation is noted in the subscript. For 
reference, the binding curve for the native sequence and the aa chimera for each site shown as 
dashed lines, , a*b and a*a (A-C) and ab* and aa* (D-F). Data collected by Margaux Miller 
and Suzanna Bennett.   
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Figure 8. (A) Cis- and trans- effects of the TTK mutation (Fig. 3C, 3F) prompted further 
investigation, lead to the construction of mutants with individual amino acids changed. 
Following the format in Fig. 2, the mutation is noted in the subscript. For reference, the 
binding curve for the native sequence and the TTK mutant are shown as dashed lines, a*b and 
a*bTTK (A-C) and ab* and ab*TTK (D-F). Data collected by Margaux Miller and Suzanna 
Bennett.   
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Figure 9. (A) The intermediate mutations each contribute to the shape of the aa* chimera 
(red, dashed) showing amino acids have independent, additive roles in governing cis-effects, 
yet the lack of any of the individual mutations in (B) to account for the change seen with them 
all together (a*bTTK, pink, dashed) indicate dependence on combinations of amino acid 
changes in determining trans-effects. Each amino acid in the binding loop operates both to 
directly determine local binding in its own site, and as part of a collective to indirectly 
determine binding in the neighboring site. Data collected by Margaux Miller and Suzanna 
Bennett.   


