216,764 research outputs found
Minimal Bending Energies of Bilayer Polyhedra
Motivated by recent experiments on bilayer polyhedra composed of amphiphilic
molecules, we study the elastic bending energies of bilayer vesicles forming
polyhedral shapes. Allowing for segregation of excess amphiphiles along the
ridges of polyhedra, we find that bilayer polyhedra can indeed have lower
bending energies than spherical bilayer vesicles. However, our analysis also
implies that, contrary to what has been suggested on the basis of experiments,
the snub dodecahedron, rather than the icosahedron, generally represents the
energetically favorable shape of bilayer polyhedra
Doping and temperature dependence of electron spectrum and quasiparticle dispersion in doped bilayer cuprates
Within the t-t'-J model, the electron spectrum and quasiparticle dispersion
in doped bilayer cuprates in the normal state are discussed by considering the
bilayer interaction. It is shown that the bilayer interaction splits the
electron spectrum of doped bilayer cuprates into the bonding and antibonding
components around the point. The differentiation between the bonding
and antibonding components is essential, which leads to two main flat bands
around the point below the Fermi energy. In analogy to the doped
single layer cuprates, the lowest energy states in doped bilayer cuprates are
located at the point. Our results also show that the striking
behavior of the electronic structure in doped bilayer cuprates is intriguingly
related to the bilayer interaction together with strong coupling between the
electron quasiparticles and collective magnetic excitations.Comment: 9 pages, 4 figures, updated references, added figures and
discussions, accepted for publication in Phys. Rev.
Gate-controlled conductance through bilayer graphene ribbons
We study the conductance of a biased bilayer graphene flake with monolayer
nanoribbon contacts. We find that the transmission through the bilayer ribbon
strongly depends on the applied bias between the two layers and on the relative
position of the monolayer contacts. Besides the opening of an energy gap on the
bilayer, the bias allows to tune the electronic density on the bilayer flake,
making possible the control of the electronic transmission by an external
parameter.Comment: 5 pages, 5 figures include
Nanoindentation of a circular sheet of bilayer graphene
Nanoindentation of bilayer graphene is studied using molecular dynamics
simulations. We compared our simulation results with those from elasticity
theory as based on the nonlinear F\"{o}ppl-Hencky equations with rigid boundary
condition. The force deflection values of bilayer graphene are compered to
those of monolayer graphene. Young's modulus of bilayer graphene is estimated
to be 0.8 TPa which is close to the value for graphite. Moreover, an almost
flat bilayer membrane at low temperature under central load has a 14 smaller
Young's modulus as compared to the one at room temperature
Localized magnetic states in biased bilayer and trilayer graphene
We study the localized magnetic states of impurity in biased bilayer and
trilayer graphene. It is found that the magnetic boundary for bilayer and
trilayer graphene presents the mixing features of Dirac and conventional
fermion. For zero gate bias, as the impurity energy approaches the Dirac point,
the impurity magnetization region diminishes for bilayer and trilayer graphene.
When a gate bias is applied, the dependence of impurity magnetic states on the
impurity energy exhibits a different behavior for bilayer and trilayer graphene
due to the opening of a gap between the valence and the conduction band in the
bilayer graphene with the gate bias applied. The magnetic moment and the
corresponding magnetic transition of the impurity in bilayer graphene are also
investigated.Comment: 16 pages,6 figure
Elastic energy of polyhedral bilayer vesicles
In recent experiments [M. Dubois, B. Dem\'e, T. Gulik-Krzywicki, J.-C.
Dedieu, C. Vautrin, S. D\'esert, E. Perez, and T. Zemb, Nature (London) Vol.
411, 672 (2001)] the spontaneous formation of hollow bilayer vesicles with
polyhedral symmetry has been observed. On the basis of the experimental
phenomenology it was suggested [M. Dubois, V. Lizunov, A. Meister, T.
Gulik-Krzywicki, J. M. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb, Proc.
Natl. Acad. Sci. U.S.A. Vol. 101, 15082 (2004)] that the mechanism for the
formation of bilayer polyhedra is minimization of elastic bending energy.
Motivated by these experiments, we study the elastic bending energy of
polyhedral bilayer vesicles. In agreement with experiments, and provided that
excess amphiphiles exhibiting spontaneous curvature are present in sufficient
quantity, we find that polyhedral bilayer vesicles can indeed be energetically
favorable compared to spherical bilayer vesicles. Consistent with experimental
observations we also find that the bending energy associated with the vertices
of bilayer polyhedra can be locally reduced through the formation of pores.
However, the stabilization of polyhedral bilayer vesicles over spherical
bilayer vesicles relies crucially on molecular segregation of excess
amphiphiles along the ridges rather than the vertices of bilayer polyhedra.
Furthermore, our analysis implies that, contrary to what has been suggested on
the basis of experiments, the icosahedron does not minimize elastic bending
energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for
large polyhedron sizes, the snub dodecahedron and the snub cube both have lower
total bending energies than the icosahedron
Quasi-Topological Insulator and Trigonal Warping in Gated Bilayer Silicene
Bilayer silicene has richer physical properties than bilayer graphene due to
its buckled structure together with its trigonal symmetric structure. The
buckled structure arises from a large ionic radius of silicon, and the trigonal
symmetry from a particular way of hopping between two silicenes. It is a
topologically trivial insulator since it carries a trivial
topological charge. Nevertheless, its physical properties are more akin to
those of a topological insulator than those of a band insulator. Indeed, a
bilayer silicene nanoribbon has edge modes which are almost gapless and
helical. We may call it a quasi-topological insulator. An important observation
is that the band structure is controllable by applying the electric field to a
bilayer silicene sheet. We investigate the energy spectrum of bilayer silicene
under electric field. Just as monolayer silicene undergoes a phase transition
from a topological insulator to a band insulator at a certain electric field,
bilayer silicene makes a transition from a quasi-topological insulator to a
band insulator beyond a certain critical field. Bilayer silicene is a metal
while monolayer silicene is a semimetal at the critical field. Furthermore we
find that there are several critical electric fields where the gap closes due
to the trigonal warping effect in bilayer silicene.Comment: 8 pages, 11 figures, to be published in J. Phys. Soc. Jp
Two-Photon Absorption in Gapped Bilayer Graphene with a Tunable Chemical Potential
Despite the now vast body of two-dimensional materials under study, bilayer
graphene remains unique in two ways: it hosts a simultaneously tunable band gap
and electron density; and stems from simple fabrication methods. These two
advantages underscore why bilayer graphene is critical as a material for
optoelectronic applications. In the work that follows, we calculate the one-
and two-photon absorption coefficients for degenerate interband absorption in a
graphene bilayer hosting an asymmetry gap and adjustable chemical
potential--all at finite temperature. Our analysis is comprehensive,
characterizing one- and two-photon absorptive behavior over wide ranges of
photon energy, gap, chemical potential, and thermal broadening. The two-photon
absorption coefficient for bilayer graphene displays a rich structure as a
function of photon energy and band gap due to the existence of multiple
absorption pathways and the nontrivial dispersion of the low energy bands. This
systematic work will prove integral to the design of bilayer-graphene-based
nonlinear optical devices.Comment: 10 pages, 4 figure
Edge states of graphene bilayer strip
The electronic structure of the zig-zag bilayer strip is analyzed. The
electronic spectra of the bilayer strip is computed. The dependence of the edge
state band flatness on the bilayer width is found. The density of states at the
Fermi level is analytically computed. It is shown that it has the singularity
which depends on the width of the bilayer strip. There is also asymmetry in the
density of states below and above the Fermi energy.Comment: 9 page
- …
