325 research outputs found

    Asymptotically Optimal Belief Space Planning in Discrete Partially-Observable Domains

    Full text link
    Robots often have to operate in discrete partially observable worlds, where the states of world are only observable at runtime. To react to different world states, robots need contingencies. However, computing contingencies is costly and often non-optimal. To address this problem, we develop the improved path tree optimization (PTO) method. PTO computes motion contingencies by constructing a tree of motion paths in belief space. This is achieved by constructing a graph of configurations, then adding observation edges to extend the graph to belief space. Afterwards, we use a dynamic programming step to extract the path tree. PTO extends prior work by adding a camera-based state sampler to improve the search for observation points. We also add support to non-euclidean state spaces, provide an implementation in the open motion planning library (OMPL), and evaluate PTO on four realistic scenarios with a virtual camera in up to 10-dimensional state spaces. We compare PTO with a default and with the new camera-based state sampler. The results indicate that the camera-based state sampler improves success rates in 3 out of 4 scenarios while having a significant lower memory footprint. This makes PTO an important contribution to advance the state-of-the-art for discrete belief space planning.Comment: 6 pages, 7 figures, submitted to ICRA 202

    Belief-space Planning for Active Visual SLAM in Underwater Environments.

    Full text link
    Autonomous mobile robots operating in a priori unknown environments must be able to integrate path planning with simultaneous localization and mapping (SLAM) in order to perform tasks like exploration, search and rescue, inspection, reconnaissance, target-tracking, and others. This level of autonomy is especially difficult in underwater environments, where GPS is unavailable, communication is limited, and environment features may be sparsely- distributed. In these situations, the path taken by the robot can drastically affect the performance of SLAM, so the robot must plan and act intelligently and efficiently to ensure successful task completion. This document proposes novel research in belief-space planning for active visual SLAM in underwater environments. Our motivating application is ship hull inspection with an autonomous underwater robot. We design a Gaussian belief-space planning formulation that accounts for the randomness of the loop-closure measurements in visual SLAM and serves as the mathematical foundation for the research in this thesis. Combining this planning formulation with sampling-based techniques, we efficiently search for loop-closure actions throughout the environment and present a two-step approach for selecting revisit actions that results in an opportunistic active SLAM framework. The proposed active SLAM method is tested in hybrid simulations and real-world field trials of an underwater robot performing inspections of a physical modeling basin and a U.S. Coast Guard cutter. To reduce computational load, we present research into efficient planning by compressing the representation and examining the structure of the underlying SLAM system. We propose the use of graph sparsification methods online to reduce complexity by planning with an approximate distribution that represents the original, full pose graph. We also propose the use of the Bayes tree data structure—first introduced for fast inference in SLAM—to perform efficient incremental updates when evaluating candidate plans that are similar. As a final contribution, we design risk-averse objective functions that account for the randomness within our planning formulation. We show that this aversion to uncertainty in the posterior belief leads to desirable and intuitive behavior within active SLAM.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133303/1/schaves_1.pd

    Simplified Continuous High Dimensional Belief Space Planning with Adaptive Probabilistic Belief-dependent Constraints

    Full text link
    Online decision making under uncertainty in partially observable domains, also known as Belief Space Planning, is a fundamental problem in robotics and Artificial Intelligence. Due to an abundance of plausible future unravelings, calculating an optimal course of action inflicts an enormous computational burden on the agent. Moreover, in many scenarios, e.g., information gathering, it is required to introduce a belief-dependent constraint. Prompted by this demand, in this paper, we consider a recently introduced probabilistic belief-dependent constrained POMDP. We present a technique to adaptively accept or discard a candidate action sequence with respect to a probabilistic belief-dependent constraint, before expanding a complete set of future observations samples and without any loss in accuracy. Moreover, using our proposed framework, we contribute an adaptive method to find a maximal feasible return (e.g., information gain) in terms of Value at Risk for the candidate action sequence with substantial acceleration. On top of that, we introduce an adaptive simplification technique for a probabilistically constrained setting. Such an approach provably returns an identical-quality solution while dramatically accelerating online decision making. Our universal framework applies to any belief-dependent constrained continuous POMDP with parametric beliefs, as well as nonparametric beliefs represented by particles. In the context of an information-theoretic constraint, our presented framework stochastically quantifies if a cumulative information gain along the planning horizon is sufficiently significant (e.g. for, information gathering, active SLAM). We apply our method to active SLAM, a highly challenging problem of high dimensional Belief Space Planning. Extensive realistic simulations corroborate the superiority of our proposed ideas
    • …
    corecore