22,755 research outputs found

    The Physiological Consequences of Bed Rest

    Full text link
    Bed rest often is used to treat a wide variety of medical conditions. However, bed rest results in profound deconditioning of the body. Bed rest reduces the hydrostatic pressure gradient within the cardiovascular system, reduces muscle force production, virtually eliminates compression on the bones, and lowers total energy expenditure. This review focuses on the deconditioning that occurs in the cardiovascular, muscular, and skeletal systems following bed rest. Reduction in plasma volume reduces cardiac preload, stroke volume, cardiac output, and ultimately, maximal oxygen consumption. Skeletal muscle volume, muscle cross sectional area, and fiber cross sectional area decrease, which results in diminished muscular strength. These changes are most pronounced in the antigravity muscles. Increased bone resorption leads to a negative calcium balance and eventually decreased bone mass, particularly in the lower limbs. Diminished bone mass coupled with decreased muscular strength increases the risk of bone fractures, even with minor falls. It is important for clinicians to recognize these negative consequences of bed rest, which can be explained independent of disease or disorder. With this in mind, bed rest can be minimized as much as possible and early ambulation and physical activity may be prescribed to limit the deconditioning effects of bed rest

    Pharmacologic counter measures minimizing post-space flight orthostatic intolerance

    Get PDF
    The effect of bed rest on drug disposition and physiological function was investigated as part of a project to determine the cardiovascular effects of space flight. One group of subjects was given doses of lidocane, penicillin-G, and ICG during a control period and following seven days of bed rest. Cardiac function was evaluated by echo-cardiography. Renal function was evaluated in a second group before and after several days of bed rest. Inulin, para-aminohippurate, and dextran clearances were studied. In the first group, the post-bed rest parameters were not statistically different from the pre-bed rest valves. In the second study, renal function did not change significantly after seven days of bed rest. Plans for future research are reviewed

    Automated electroencephalography system and electroencephalographic correlates of space motion sickness, part 2

    Get PDF
    Sleep pattern alterations were detected in two subjects by electroencephalographic, electrographic, and electromyographic monitoring before, during and after a 28 day bed rest. Standardized criteria were used for data analysis. During the second half of the bed-rest period, sleep latency and stage 3 increased, while total sleep time, stage 2, and REM latency decreased. In addition, during bed rest both subjects showed an increase in the number of REM periods and a slight increase in stage REM amount. No major alterations were seen in the recovery period. Of the alterations found to be associated with bed rest, only one, the increase in stage 3 sleep, was also seen consistently during Skylab. Conversely, none of the postflight changes seen following Skylab were observed during the post-bed-rest recovery period

    Evaluation of positive G sub Z tolerance following simulated weightlessness (bedrest)

    Get PDF
    The magnitude of physiologic changes which are known to occur in human subjects exposed to varying levels of + G sub Z acceleration following bed rest simulation of weightlessness was studied. Bed rest effects were documented by fluid and electrolyte balance studies, maximal exercise capability, 70 deg passive tilt and lower body negative pressure tests and the ability to endure randomly prescribed acceleration profiles of +2G sub Z, +3G sub Z, and +4G sub Z. Six healthy male volunteers were studied during two weeks of bed rest after adequate control observations, followed by two weeks of recovery, followed by a second two-week period of bed rest at which time an Air Force cutaway anti-G suit was used to determine its effectiveness as a countermeasure for observed cardiovascular changes during acceleration. Results showed uniform and significant changes in all measured parameters as a consequence of bed rest including a reduced ability to tolerate +G sub Z acceleration. The use of anti-G suits significantly improved subject tolerance to all G exposures and returned measured parameters such as heart rate and blood pressure towards or to pre-bed-rest (control) values in four of the six cases

    Changes in lower extremity muscle function after 56 days of bed rest

    Get PDF
    Preservation of muscle function, known to decline in microgravity and simulation (bed rest), is important for successful spaceflight missions. Hence, there is great interest in developing interventions to prevent musclefunction loss. In this study, 20 males underwent 56 days of bed rest. Ten volunteers were randomized to do resistive vibration exercise (RVE). The other 10 served as controls. RVE consisted of muscle contractions against resistance and concurrent whole-body vibration. Main outcome parameters were maximal isometric plantar-flexion force (IPFF), electromyography (EMG)/force ratio, as well as jumping power and height. Measurements were obtained before and after bed rest, including a morning and evening assessment on the first day of recovery from bed rest. IPFF (-17.1%), jumping peak power (-24.1%), and height (-28.5%) declined (P < 0.05) in the control group. There was a trend to EMG/force ratio decrease (-20%; P < 0.051). RVE preserved IPFF and mitigated the decline of countermovement jump performance (peak power -12.2%; height -14.2%). In both groups, IPFF was reduced between the two measurements of the first day of reambulation. This study indicates that bed rest and countermeasure exercises differentially affect the various functions of skeletal muscle. Moreover, the time course during recovery needs to be considered more thoroughly in future studies, as IPFF declined not only with bed rest but also within the first day of reambulation. RVE was effective in maintaining IPFF but only mitigated the decline in jumping performance. More research is needed to develop countermeasures that maintain muscle strength as well as other muscle functions including power

    Prevention of bone mineral changes induced by bed rest: Modification by static compression simulating weight bearing, combined supplementation of oral calcium and phosphate, calcitonin injections, oscillating compression, the oral diophosphonatedisodium etidronate, and lower body negative pressure

    Get PDF
    The phenomenon of calcium loss during bed rest was found to be analogous to the loss of bone material which occurs in the hypogravic environment of space flight. Ways of preventing this occurrence are investigated. A group of healthy adult males underwent 24-30 weeks of continuous bed rest. Some of them were given an exercise program designed to resemble normal ambulatory activity; another subgroup was fed supplemental potassium phosphate. The results from a 12-week period of treatment were compared with those untreated bed rest periods. The potassium phosphate supplements prevented the hypercalciuria of bed rest, but fecal calcium tended to increase. The exercise program did not diminish the negative calcium balance. Neither treatment affected the heavy loss of mineral from the calcaneus. Several additional studies are developed to examine the problem further

    Effect of long-term hypokinesia on the electrolytic composition of the blood in patients with osteoarticular tuberculosis

    Get PDF
    Seventy-six patients with osteoarticular tuberculosis were divided into two groups, one of which was required to maintain strict bed rest and the other of which was allowed unrestricted motor activity. A study of blood electrolyte composition in the two groups revealed that bed rest for these patients results in decreased plasma potassium calcium, and magnesium content, but that these indices improved after the patients were allowed to move freely. The study suggests that patients with osteoarticular tuberculosis who are on bed rest be carefully observed for alterations in blood electrolytes and that proper electrolyte balance be maintained

    Joint US/USSR study: Comparison of effects of horizontal and head-down bed rest

    Get PDF
    An account is given of the results of the first joint U.S./U.S.S.R. bed rest study. The study was accomplished in two parts: A soviet part (May to June 1979) and an American part (July to August 1979). Both studies were conducted under identical conditions and provided a basis for comparison of physiologic reactions and standardizing procedures and methods. Each experiment consisted of three periods: 14 days of pre-bed rest control, 7 days of bed rest, and a 10 to 14 day recovery period. Ten males participated in each study, with five subjects experiencing horizontal bed rest and five subjects a -6 deg head-down body position. Biochemical and hormonal measurements were made of blood and urine, with particular attention to electrolyte metabolism and kidney function; cardio-pulmonary changes at rest and exercise; influence of Lower Body Negative Pressure (LBNP); and incremental exercise using a bicyle ergometer while supine and sitting. Expected moderate changes were noted to occur for various physiologic parameters. Clinical evidence pointed to the fact that head-down bed rest when compared to horizontal conditions more closely matched the conditions seen after manned spaceflight. For the most part, statistically significant differences between the two body positions were not observed

    Space-flight simulations of calcium metabolism using a mathematical model of calcium regulation

    Get PDF
    The results of a series of simulation studies of calcium matabolic changes which have been recorded during human exposure to bed rest and space flight are presented. Space flight and bed rest data demonstrate losses of total body calcium during exposure to hypogravic environments. These losses are evidenced by higher than normal rates of urine calcium excretion and by negative calcium balances. In addition, intestinal absorption rates and bone mineral content are assumed to decrease. The bed rest and space flight simulations were executed on a mathematical model of the calcium metabolic system. The purpose of the simulations is to theoretically test hypotheses and predict system responses which are occurring during given experimental stresses. In this case, hypogravity occurs through the comparison of simulation and experimental data and through the analysis of model structure and system responses. The model reliably simulates the responses of selected bed rest and space flight parameters. When experimental data are available, the simulated skeletal responses and regulatory factors involved in the responses agree with space flight data collected on rodents. In addition, areas within the model that need improvement are identified

    The effects of bed rest on crew performance during simulated shuttle reentry. Volume 1: Study overview and physiological results

    Get PDF
    A centrifuge study was carried out to measure physiological stress and control task performance during simulated space shuttle orbiter reentry. Jet pilots were tested with, and without, anti-g-suit protection. The pilots were exposed to simulated space shuttle reentry acceleration profiles before, and after, ten days of complete bed rest, which produced physiological deconditioning similar to that resulting from prolonged exposure to orbital zero g. Pilot performance in selected control tasks was determined during simulated reentry, and before and after each simulation. Physiological stress during reentry was determined by monitoring heart rate, blood pressure, and respiration rate. Study results indicate: (1) heart rate increased during the simulated reentry when no g protection was given, and remained at or below pre-bed rest values when g-suits were used; (2) pilots preferred the use of g-suits to muscular contraction for control of vision tunneling and grayout during reentry; (3) prolonged bed rest did not alter blood pressure or respiration rate during reentry, but the peak reentry acceleration level did; and (4) pilot performance was not affected by prolonged bed rest or simulated reentry
    corecore