24,589 research outputs found

    Evolutionary dynamics of insertion sequences in relation to the evolutionary histories of the chromosome and symbiotic plasmid genes of Rhizobium etli populations

    Get PDF
    Insertion sequences (IS) are mobile genetic elements that are distributed in many prokaryotes. In particular, in the genomes of the symbiotic nitrogen-fixing bacteria collectively known as rhizobia, IS are fairly abundant in plasmids or chromosomal islands that carry the genes needed for symbiosis. Here, we report an analysis of the distribution and genetic conservation of the IS found in the genome of Rhizobium etli CFN42 in a collection of 87 Rhizobium strains belonging to populations with different geographical origins. We used PCR to generate presence/absence profiles of the 39 IS found in R. etli CFN42 and evaluated whether the IS were located in consistent genomic contexts. We found that the IS from the symbiotic plasmid were frequently present in the analyzed strains, whereas the chromosomal IS were observed less frequently. We then examined the evolutionary dynamics of these strains based on a population genetic analysis of two chromosomal housekeeping genes (glyA and dnaB) and three symbiotic sequences (nodC and the two IS elements). Our results indicate that the IS contained within the symbiotic plasmid have a higher degree of genomic context conservation, lower nucleotide diversity and genetic differentiation, and fewer recombination events than the chromosomal housekeeping genes. These results suggest that the R. etli populations diverged recently in Mexico, that the symbiotic plasmid also had a recent origin, and that the IS elements have undergone a process of cyclic infection and expansion

    A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity

    Get PDF
    We previously identified the lpa1 (low phytic acid) 280-10 line that carries a mutation conferring a 90% reduction in phytic acid (InsP6) content. In contrast to other lpa mutants, lpa1(280-10) does not display negative pleiotropic effects. In the present paper, we have identified the mutated gene and analysed its impact on the phytic acid pathway. Here, we mapped the lpa1(280-10) mutation by bulk analysis on a segregating F2 population, an then, by comparison with the soybean genome, we identified and sequenced a candidate gene. The InsP6 pathway was analysed by gene expression and quantification of metabolites. The mutated Pvmrp1(280-10) cosegregates with the lpa1(280-10) mutation, and the expression level of several genes of the InsP6 pathway are reduced in the lpa1(280-10) mutant as well as the inositol and raffinosaccharide content. PvMrp2, a very similar paralogue of PvMrp1 was also mapped and sequenced. The lpa1 mutation in beans is likely the result of a defective Mrp1 gene (orthologous to the lpa genes AtMRP5 and ZmMRP4), while its Mrp2 paralog is not able to complement the mutant phenotype in the seed. This mutation appears to down-regulate the InsP6 pathway at the transcriptional level, as well as altering inositol-related metabolism and affecting ABA sensitivity

    High-resolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides

    Get PDF
    Arthropod herbivores cause dramatic crop losses, and frequent pesticide use has led to widespread resistance in numerous species. One such species, the two-spotted spider mite, Tetranychus urticae, is an extreme generalist herbivore and a major worldwide crop pest with a history of rapidly developing resistance to acaricides. Mitochondrial Electron Transport Inhibitors of complex I (METI-Is) have been used extensively in the last 25 years to control T. urticae around the globe, and widespread resistance to each has been documented. METI-I resistance mechanisms in T. urticae are likely complex, as increased metabolism by cytochrome P450 monooxygenases as well as a target-site mutation have been linked with resistance. To identify loci underlying resistance to the METI-I acaricides fenpyroximate, pyridaben and tebufenpyrad without prior hypotheses, we crossed a highly METI-I-resistant strain of T. urticae to a susceptible one, propagated many replicated populations over multiple generations with and without selection by each compound, and performed bulked segregant analysis genetic mapping. Our results showed that while the known H92R target-site mutation was associated with resistance to each compound, a genomic region that included cytochrome P450-reductase (CPR) was associated with resistance to pyridaben and tebufenpyrad. Within CPR, a single nonsynonymous variant distinguished the resistant strain from the sensitive one. Furthermore, a genomic region linked with tebufenpyrad resistance harbored a non-canonical member of the nuclear hormone receptor 96 (NHR96) gene family. This NHR96 gene does not encode a DNA-binding domain (DBD), an uncommon feature in arthropods, and belongs to an expanded family of 47 NHR96 proteins lacking DBDs in T. urticae. Our findings suggest that although cross-resistance to METI-Is involves known detoxification pathways, structural differences in METI-I acaricides have also resulted in resistance mechanisms that are compound-specific

    Genome Resources for Climate‐Resilient Cowpea, an Essential Crop for Food Security

    Get PDF
    Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought‐prone climates, and a primary source of protein in sub‐Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K‐499‐35 include a whole‐genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi‐parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited‐input small‐holder farming and climate stress

    Phylogenomic study of Burkholderia glathei-like organisms, proposal of 13 novel Burkholderia species and emended descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae

    Get PDF
    Partial gyrB gene sequence analysis of 17 isolates from human and environmental sources revealed 13 clusters of strains and identified them as Burkholderia glathei Glade (BGC) bacteria. The taxonomic status of these clusters was examined by whole-genome sequence analysis, determination of the G+C content, whole-cell fatty acid analysis and biochemical characterization. The whole-genome sequence-based phylogeny was assessed using the Genome Blast Distance Phylogeny (GBDP) method and an extended multilocus sequence analysis (MLSA) approach. The results demonstrated that these 17 BGC isolates represented 13 novel Burkholderia species that could be distinguished by both genotypic and phenotypic characteristics. BGC strains exhibited a broad metabolic versatility and developed beneficial, symbiotic, and pathogenic interactions with different hosts. Our data also confirmed that there is no phylogenetic subdivision in the genus Burkholderia that distinguishes beneficial from pathogenic strains. We therefore propose to formally classify the 13 novel BGC Burkholderia species as Burkholderia arvi sp. nov. (type strain LMG 29317(T) = CCUG 68412(T)), Burkholderia hypogeia sp. nov. (type strain LMG 29322(T) = CCUG 68407(T)), Burkholderia ptereochthonis sp. nov. (type strain LMG 29326(T) = CCUG 68403(T)), Burkholderia glebae sp. nov. (type strain LMG 29325(T) = CCUG 68404(T)), Burkholderia pedi sp. nov. (type strain LMG 29323(T) = CCUG 68406(T)), Burkholderia arationis sp. nov. (type strain LMG 29324(T) = CCUG 68405(T)), Burkholderia fortuita sp. nov. (type strain LMG 29320(T) = CCUG 68409(T)), Burkholderia temeraria sp. nov. (type strain LMG 29319(T) = CCUG 68410(T)), Burkholderia calidae sp. nov. (type strain LMG 29321(T) = CCUG 68408(T)), Burkholderia concitans sp. nov. (type strain LMG 29315(T) = CCUG 68414(T)), Burkholderia turbans sp. nov. (type strain LMG 29316(T) = CCUG 68413(T)), Burkholderia catudaia sp. nov. (type strain LMG 29318(T) = CCUG 68411(T)) and Burkholderia peredens sp. nov. (type strain LMG 29314(T) = CCUG 68415(T)). Furthermore, we present emended descriptions of the species Burkholderia sordidicola, Burkholderia zhejlangensis and Burkholderia grimmiae. The GenBank/EMBUDDBJ accession numbers for the 16S rRNA and gyrB gene sequences determined in this study are LT158612-LT158624 and LT158625-LT1158641, respectively
    corecore