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Partial gyrB gene sequence analysis of 17 isolates from human and environmental

sources revealed 13 clusters of strains and identified them as Burkholderia glathei clade

(BGC) bacteria. The taxonomic status of these clusters was examined by whole-genome

sequence analysis, determination of the G+C content, whole-cell fatty acid analysis

and biochemical characterization. The whole-genome sequence-based phylogeny was

assessed using the Genome Blast Distance Phylogeny (GBDP) method and an extended

multilocus sequence analysis (MLSA) approach. The results demonstrated that these 17

BGC isolates represented 13 novel Burkholderia species that could be distinguished by

both genotypic and phenotypic characteristics. BGC strains exhibited a broad metabolic

versatility and developed beneficial, symbiotic, and pathogenic interactions with different

hosts. Our data also confirmed that there is no phylogenetic subdivision in the genus

Burkholderia that distinguishes beneficial from pathogenic strains. We therefore propose

to formally classify the 13 novel BGC Burkholderia species as Burkholderia arvi sp.

nov. (type strain LMG 29317T = CCUG 68412T), Burkholderia hypogeia sp. nov. (type

strain LMG 29322T = CCUG 68407T), Burkholderia ptereochthonis sp. nov. (type

strain LMG 29326T = CCUG 68403T), Burkholderia glebae sp. nov. (type strain LMG

29325T = CCUG 68404T), Burkholderia pedi sp. nov. (type strain LMG 29323T = CCUG

68406T), Burkholderia arationis sp. nov. (type strain LMG 29324T = CCUG

68405T), Burkholderia fortuita sp. nov. (type strain LMG 29320T = CCUG 68409T),

Burkholderia temeraria sp. nov. (type strain LMG 29319T = CCUG 68410T),

Burkholderia calidae sp. nov. (type strain LMG 29321T = CCUG 68408T), Burkholderia

concitans sp. nov. (type strain LMG 29315T = CCUG 68414T), Burkholderia turbans

sp. nov. (type strain LMG 29316T = CCUG 68413T), Burkholderia catudaia
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sp. nov. (type strain LMG 29318T = CCUG 68411T) and Burkholderia peredens sp.

nov. (type strain LMG 29314T = CCUG 68415T). Furthermore, we present emended

descriptions of the species Burkholderia sordidicola, Burkholderia zhejiangensis and

Burkholderia grimmiae. The GenBank/EMBL/DDBJ accession numbers for the 16S

rRNA and gyrB gene sequences determined in this study are LT158612-LT158624 and

LT158625-LT158641, respectively.

Keywords: Burkholderia, genomic taxonomy, GBDP, GGDC, MLSA, phylogenomics

INTRODUCTION

The genus Burkholderia currently comprises 90 validly named
species (Euzeby, 1997) and several unculturedCandidatus species
(Van Oevelen et al., 2004; Verstraete et al., 2011; Lemaire et al.,
2012) which occupy very diverse niches (Coenye and Vandamme,
2003).Many Burkholderia species have thus far only been isolated
as free-living organisms but a growing body of literature reveals
that they live in close interaction with numerous plant, animal,
fungal or even amoebozoan hosts (Marolda et al., 1999; Van
Borm et al., 2002; Kikuchi et al., 2011; Verstraete et al., 2013;
Stopnisek et al., 2016; Xu et al., 2016). Burkholderia species
may be beneficial to their hosts because some strains can fix
nitrogen, produce plant hormones or siderophores, or lower
pathogen-related ethylene levels; hence they have been exploited
for plant growth promotion and biocontrol of plant diseases
(Compant et al., 2008; Vial et al., 2011). Yet, other Burkholderia
species are notorious pathogens in plants, animals and humans
(Mahenthiralingam et al., 2008). This ecological diversity is
likely attributed to their large, multireplicon genomes (typically
between 6 and 9 Mb) which also confer a metabolic versatility
allowing them to degrade a wide range of recalcitrant xenobiotics
(Parke and Gurian-Sherman, 2001; Coenye and Vandamme,
2003).

Phylogenetic analyses based on the 16S rRNA and protein-
coding genes showed that Burkholderia glathei clade (BGC)
species are phylogenetically divergent from other Burkholderia
species and form a separate clade (Sawana et al., 2014; Vandamme
et al., 2014). Although this clade thus far includes only 12
formally named species, its functional diversity is impressive.
In this clade too, most species have been isolated from bulk
and rhizosphere soil (Zolg and Ottow, 1975; Viallard et al.,
1998; Vandamme et al., 2013; Draghi et al., 2014; Baek et al.,
2015), but also from contaminated soil and sludge from a
wastewater treatment system (Lu et al., 2012; Vandamme et al.,
2013; Liu et al., 2014). Two BGC species were associated with
less studied hosts like fungi (Burkholderia sordidicola) and
mosses (Burkholderia grimmiae) (Lim et al., 2003; Tian et al.,
2013) but numerous, mostly uncultivated BGC species adopted
endosymbiotic lifestyles in insect guts (Kikuchi et al., 2011; Tago
et al., 2015; Xu et al., 2016) or plant leaf tissue (Verstraete
et al., 2013; Carlier et al., 2015) and many additional unclassified
B. glathei-like bacteria have been reported (Nogales et al., 2001;

Abbreviations: BGC, Burkholderia glathei clade; GGDC, Genome-to-Genome

Distance Calculator; GBDP, Genome Blast Distance Phylogeny; dDDH, digital

DNA-DNA hybridization; MLSA, multilocus sequence analysis.

Salles et al., 2006; Pumphrey and Madsen, 2008; Draghi et al.,
2014; Verstraete et al., 2014; Peeters et al., 2016).

The present study aimed to perform a phylogenomic study
of established and novel species in the B. glathei clade, to
formally name the latter and to make reference cultures and
whole-genome sequences of each of these versatile bacteria
publicly available. The genome sequence-based phylogeny
was assessed using the Genome Blast Distance Phylogeny
(GBDP) method (Meier-Kolthoff et al., 2013) and an extended
multilocus sequence analysis (MLSA) approach. For phenotypic
characterization, whole-cell fatty acid profiling and biochemical
analyses were performed.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
Table 1 lists the sources of the 17 studied isolates. Details of
type strains of each of the present BGC species were described
previously (Zolg and Ottow, 1975; Lim et al., 2003; Lu et al., 2012;
Tian et al., 2013; Vandamme et al., 2013; Draghi et al., 2014; Liu
et al., 2014; Baek et al., 2015). Strains were grown aerobically
on buffered nutrient agar (Oxoid, pH 6.8) and incubated
at 28◦C. Cultures were preserved in MicroBankTM vials
at−80◦C.

16S rRNA Gene Sequence Analysis
Nearly complete sequences were obtained as described previously
(Peeters et al., 2013).

gyrB Gene Sequence Analysis
Partial gyrB gene sequences were obtained as described
previously (Spilker et al., 2009; Peeters et al., 2013). Sequence
assembly was performed using BioNumerics v7.5 (Applied
Maths). Sequences (589–1182 bp) were aligned based on amino
acid sequences using Muscle (Edgar, 2004) in MEGA6 (Tamura
et al., 2013). All positions with less than 95% site coverage were
eliminated, resulting in a total of 570 positions in the final dataset.
Phylogenetic analysis was conducted in MEGA6 (Tamura et al.,
2013).

Whole-Genome Sequencing
Genomic DNA of 20 strains (Table 2) was prepared as described
by Pitcher et al. (1989). Genomic libraries were prepared
using the Nextera kit following the methods introduced by
Baym et al. (2015) and the 151 bp paired-end libraries were
sequenced on the Illumina HiSeq platform of the University
of New Hampshire Hubbard Center for Genomics Studies
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TABLE 1 | Strains included in the present study.

Strain Other strains designations Source Depositor References

Burkholderia arvi sp. nov.

LMG 29317T CCUG 68412T, MAN34T Soil (Argentina, 2010) Walter Draghi Draghi et al., 2014

Burkholderia hypogeia sp. nov.

LMG 29322T CCUG 68407T Soil (Belgium, 2014) Own isolate Peeters et al., 2016

Burkholderia ptereochthonis sp. nov.

LMG 29326T CCUG 68403T Soil (Belgium, 2014) Own isolate Peeters et al., 2016

Burkholderia glebae sp. nov.

LMG 29325T CCUG 68404T Soil (Belgium, 2014) Own isolate Peeters et al., 2016

LMG 22938 RA57-7 Soil (Netherlands) Joana Salles Salles et al., 2006

Burkholderia pedi sp. nov.

LMG 29323T CCUG 68406T Soil (Belgium, 2014) Own isolate Peeters et al., 2016

R-52605 Soil (Belgium, 2014) Own isolate Peeters et al., 2016

Burkholderia arationis sp. nov.

LMG 29324T CCUG 68405T Soil (Belgium, 2014) Own isolate Peeters et al., 2016

R-23361 RG47-6 Soil (Netherlands) Joana Salles Salles et al., 2006

Burkholderia fortuita sp. nov.

LMG 29320T CCUG 68409T Soil (South Africa, 2013) Brecht Verstraete Verstraete et al., 2014

Burkholderia temeraria sp. nov.

LMG 29319T CCUG 68410T Soil (South Africa, 2013) Brecht Verstraete Verstraete et al., 2014

Burkholderia calidae sp. nov.

LMG 29321T CCUG 68408T Water (Belgium, 2013) Own isolate Peeters et al., 2016

Burkholderia concitans sp. nov.

LMG 29315T CCUG 68414T, AU12121T Lung tissue (USA, 2006) John J. LiPuma

R-46586 AU21394 Blood (USA, 2010) John J. LiPuma

Burkholderia turbans sp. nov.

LMG 29316T CCUG 68413T, HI4065T Pleural fluid (USA, 2006) John J. LiPuma

Burkholderia catudaia sp. nov.

LMG 29318T CCUG 68411T Soil (South Africa, 2013) Brecht Verstraete Verstraete et al., 2014

Burkholderia peredens sp. nov.

LMG 29314T CCUG 68415T, NF100T Soil (Japan) M. Hayatsu Hayatsu et al., 2000

LMG, BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Ghent University, Ghent, Belgium.

with an average insert size of 386 bp. Quality reports
were created by FastQC. Adaptors and low-quality reads
were trimmed using Trimmomatic (Bolger et al., 2014) with
the following options: ILLUMINACLIP:NexteraPE-PE.fa:2:30:10
MAXINFO:60:0.4 MINLEN:60. Assembly was performed using
SPAdes (Bankevich et al., 2012) with default k-mer sizes (21,
33, 55, 77) and mismatch correction (option—careful). Contigs
with length <500 bp and coverage <2 were discarded from
the resulting assemblies. Raw reads were mapped against the
assemblies using bwa-mem (Li, 2013) and contigs were polished
using Pilon (Walker et al., 2014) with default parameters. Quast
(Gurevich et al., 2013) was used to create quality reports of the
resulting assemblies. Annotation was performed using Prokka
1.11 (Seemann, 2014) with a genus-specific database based on
reference genomes from the Burkholderia Genome Database
(Winsor et al., 2008).

Publicly Available Genomes
Twenty three publicly available whole-genome sequences of BGC
bacteria were downloaded from the NCBI database (Table 2).

B. gladioli BSR3 (Seo et al., 2011) was used as an outgroup in
all phylogenomic analyses. For B. megalochromosomata JC2949T

the whole-genome sequence was not publicly available (February
1st, 2016) and the contig sequences were provided by J. Chun
(Baek et al., 2015). For B. sordidicola S170, B. zhejiangensis
CEIB S4-3 and B. megalochromosomata JC2949T no annotation
was available and annotation was performed using Prokka as
described above.

Phylogenomic Analysis
The latest version of the Genome Blast Distance Phylogeny
(GBDP) approach was applied (Meier-Kolthoff et al., 2013)
to calculate the intergenomic distance between each pair of
genomes (based on the nucleotide data) and included the
calculation of 100 replicate distances to assess pseudo-bootstrap
support (Meier-Kolthoff et al., 2014a). Distance calculations were
conducted under the recommended settings of the Genome-to-
Genome Distance Calculator (GGDC 2.1; http://ggdc.dsmz.de),
as described earlier (Meier-Kolthoff et al., 2013). The GBDP
trimming algorithm and formula d5 were chosen because of
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TABLE 2 | Genomes included in the present study.

Strain Project Contigsa Size (bp) %GC References

B. glathei LMG 14190T PRJEB6934 139 8,049,485 64.7 Stopnisek et al., 2016

B. sordidicola LMG 22029T PRJEB12475 72 6,874,511 60.2 This study

B. zhejiangensis OP-1T PRJNA238427 116 7,767,215 62.7 Liu et al., 2014

B. grimmiae R27T PRJNA238424 160 6,704,301 63.0 Liu et al., 2014

B. choica LMG 22940T PRJEB12479 657 9,776,207 62.7 This study

B. humi LMG 22934T PRJEB12476 272 7,619,203 62.8 This study

B. telluris LMG 22936T PRJEB12477 163 7,056,109 64.0 This study

B. terrestris LMG 22937T PRJEB12478 645 8,201,357 62.6 This study

B. udeis LMG 27134T PRJEB12480 242 10,051,569 60.0 This study

B. cordobensis LMG 27620T PRJEB12481 74 8,208,096 63.7 This study

B. jiangsuensis MP-1T PRJNA238425 168 8,611,053 62.6 Liu et al., 2014

B. megalochromosomata JC2949T PRJNA241423b 285 9,506,519 62.7 Baek et al., 2015

B. arvi sp. nov. LMG 29317T PRJEB12485 351 9,665,767 62.4 This study

B. hypogeia sp. nov. LMG 29322T PRJEB12491 94 8,333,271 63.2 This study

B. ptereochthonis sp. nov. LMG 29326T PRJEB12495 117 7,714,803 64.2 This study

B. glebae sp. nov. LMG 29325T PRJEB12494 194 7,842,312 62.7 This study

B. pedi sp. nov. LMG 29323T PRJEB12492 142 9,141,307 63.0 This study

B arationis sp. nov. LMG 29324T PRJEB12493 629 9,377,494 62.8 This study

B. fortuita sp. nov. LMG 29320T PRJEB12489 50 7,360,810 62.9 This study

B. temeraria sp. nov. LMG 29319T PRJEB12488 129 8,325,519 62.7 This study

B. calidae sp. nov. LMG 29321T PRJEB12490 379 9,609,693 62.5 This study

B. concitans sp. nov. LMG 29315T PRJEB12483 47 6,166,171 63.2 This study

B. turbans sp. nov. LMG 29316T PRJEB12484 120 7,352,555 63.1 This study

B. catudaia sp. nov. LMG 29318T PRJEB12486 156 7,726,733 62.8 This study

B. peredens sp. nov. LMG 29314T PRJEB12482 78 6,726,081 63.1 This study

B. cordobensis YI23 PRJNA74517 6 8,896,411 63.3 Lim et al., 2012

Burkholderia sp. PML1(12) PRJNA53985 377 9,368,249 60.1 Uroz and Oger, 2015

Burkholderia sp. S170 PRJNA248610 216 10,261,891 59.6 Llado et al., 2014

B. zhejiangensis CEIB S4-3 PRJNA264584 154 7,666,841 62.8 Hernandez-Mendoza et al., 2014

B. zhejiangensis SJ98 PRJNA81431 14 7,878,727 62.7 Kumar et al., 2012

Burkholderia sp. Leaf177 PRJNA297956 27 6,804,288 59.2 Bai et al., 2015

B. concitans sp. nov. MR1 PRJNA269162 58 6,019,671 63.3 Pawitwar et al., 2015

Burkholderia sp. RPE64 PRJDB1103 5 6,964,487 63.2 Shibata et al., 2013

B. cordobensis RPE67 PRJDB1660 6 8,685,756 63.4 Takeshita et al., 2014

Ca. B. kirkii UZHbot1 PRJNA69825 305 3,990,738 62.9 Carlier and Eberl, 2012

Ca. B. kirkii UZHbot2 PRJNA253356 48 3,914,712 64.0 Pinto-Carbo et al., 2016

Ca. B. pumila UZHbot3 PRJNA253357 519 3,681,223 59.3 Pinto-Carbo et al., 2016

Ca. B. verschuerenii UZHbot4 PRJNA253359 446 6,188,480 61.9 Pinto-Carbo et al., 2016

Ca. B. humilis UZHbot5 PRJNA253360 354 5,148,994 60.1 Pinto-Carbo et al., 2016

Ca. B. calva UZHbot6 PRJNA253361 307 4,208,605 61.4 Pinto-Carbo et al., 2016

Ca. B. brachyanthoides UZHbot7 PRJNA253362 684 3,545,532 61.2 Pinto-Carbo et al., 2016

Ca. B. schumannianae UZHbot8 PRJNA253363 283 2,362,726 63.1 Pinto-Carbo et al., 2016

Ca. B. crenata UZHbot9 PRJNA253365 643 2,843,741 59.0 Carlier et al., 2015

aStatus complete: RPE64, RPE67, YI23; status draft assembly: all other genomes. bGenome sequence not publicly available, contig sequences were provided by J. Chun (Baek et al.,

2015).

their advantages for phylogenetic inference (Meier-Kolthoff et al.,
2014a) and according distance matrices were prepared (a single
matrix for the original distances plus 100 matrices containing
the replicates). A phylogenomic tree with branch support (Meier-
Kolthoff et al., 2014a) was inferred using FastME v2.07 with tree
bisection and reconnection post-processing (Lefort et al., 2015).

Moreover, pairwise digital DNA-DNA hybridization (dDDH)
values and their confidence intervals were also determined using
GGDC 2.1 under recommended settings (Meier-Kolthoff et al.,
2013). The potential affiliation of the novel strains to existing
species was determined by clustering using a 70% dDDH radius
around each of the 12 BGC type strains as previously applied (Liu
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et al., 2015). Visualization and annotation of the phylogenetic tree
was performed using iTOL (Letunic and Bork, 2011).

As an alternative for the GBDP method, an extended MLSA
analysis was performed in which a whole-genome phylogeny
was calculated based on single-copy orthologous genes as
described previously (Pinto-Carbo et al., 2016). In short, single-
copy orthologs were identified using blastp and OrthoMCL
v2.0.9 (with e-value cutoff 1e10−6 and 50% match cutoff;
Fischer et al., 2011) and aligned based on their amino acid
sequences using MUSCLE. The alignments were trimmed using
TrimAl (removing positions with gaps in more than 50% of
the sequences) and concatenated to construct a Maximum
Likelihood tree using RaXML v7.4.2 (Stamatakis, 2014) with the
WAG amino acid substitution model and 100 rapid bootstrap
analyses.

Phenotypic Characterization
Phenotypic and cellular fatty acid analyses were performed as
described previously (Draghi et al., 2014).

RESULTS

16S rRNA Gene Sequence Analysis
The 16S rRNA gene sequences determined in the present
study are publicly available through the GenBank/EMBL/DDBJ
accession numbers LT158612-LT158624.

gyrB Gene Sequence Analysis
Partial gyrB gene sequences were compared to those of the
type strains of the 12 validly named BGC species (Figure 1).
The 17 unclassified isolates represented 13 taxa which showed
83.4–96.2% pairwise identity with the gyrB sequences of the
type strains of other BGC species. The gyrB gene sequences
determined in the present study are publicly available through the
GenBank/EMBL/DDBJ accession numbers LT158625-LT158641.

Whole-Genome Sequencing
To further characterize the taxonomic status of these 13 taxa, we
determined the whole-genome sequence of one strain per gyrB
cluster and of B. sordidicola LMG 22029T, B. choica LMG 22940T,

FIGURE 1 | Phylogenetic tree based on partial gyrB sequences of the 17 isolates in this study and type strains of phylogenetically related Burkholderia

species. The optimal tree (highest log likelihood) was constructed using the Maximum Likelihood method and General Time Reversible model in MEGA6 (Tamura

et al., 2013). A discrete Gamma distribution was used to model evolutionary rate differences among sites [5 categories (+G, parameter = 0.5462)] and allowed for

some sites to be evolutionarily invariable ([+I], 37.9331% sites). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test

(1000 replicates) are shown next to the branches if greater than 50%. For B. megalochromosomata JC2949T the gyrB gene sequence was extracted from the

genome sequence. The gyrB sequence of B. kururiensis LMG 19447T was used as outgroup. The scale bar indicates the number of substitutions per site.
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B. humi LMG 22934T, B. telluris LMG 22936T, B. terrestris
LMG 22937T, B. udeis LMG 27134T, and B. cordobensis LMG
27620T. The assembly of the Illumina HiSeq 150 bp paired
end reads resulted in assemblies with 47–657 contigs and
a total of 6,166,171–10,051,569 bp (Table 2). The annotated
assemblies of these 20 genomes were submitted to the European
Nucleotide Archive and are publicly available through the
GenBank/EMBL/DDBJ accession numbers listed in Table 2 and
the species descriptions. The genome sequences of the remaining
five BGC type strains and of 18 additional strains were publicly
available (Table 2).

DNA Base Composition
The G+C content of all type strains was calculated from their
genome sequences and ranged from 62.4 to 64.2 mol% (Table 2).

Phylogenomic Analysis
The pairwise intergenomic distances and dDDH estimates of
the 44 genome sequences are listed in Supplementary Table 1.
The phylogenetic tree inferred from the intergenomic distances
(Figure 2) was well resolved and most branches showed a
very high bootstrap support (average support: 94.8%). Species
delineation based on the pairwise dDDH values and a 70%
dDDH radius around each type strain yielded 39 species which

included the present 12 validly named species as well as the 13
novel species delineated by means of partial gyrB gene sequences
(Figure 1).

For the extended MLSA approach, we identified 332
single-copy orthologs that were present in all 44 genomes.
The Maximum-Likelihood phylogenetic tree based on the
concatenated amino acid alignment (Figure 3) was well
resolved and showed a high bootstrap support on almost all
branches.

The topologies of the two phylogenomic trees (Figures 2, 3)
were very similar and both revealed six clusters of species (A-F).
The main difference in tree topology related to the phylogenetic
position of the Candidatus species in cluster C. This cluster
was supported by a 100% bootstrap value in both analyses
but its relative position to cluster D species differed in the
two trees (Figures 2, 3). Additionally, the internal branching
order of cluster C, E and F species differed minimally between
both analyses. Both phylogenomic analyses showed that strain
MR1 clustered with B. concitans sp. nov. and that strain RPE67
clustered with B. cordobensis. Finally, the large distances between
strains PML1(12) and S170, and the type strains of B. glathei
and B. sordidicola, respectively, indicated that both strains were
misidentified and wrongly annotated in the NCBI database as B.
glathei and B. sordidicola, respectively (Figures 2, 3). Both strains

FIGURE 2 | Whole-genome sequence based phylogenomic tree of all BGC genomes inferred by GBDP. The outer column shows the isolation source of the

strains. Pseudo-bootstrap support values above 60% are shown. The tree reveals a high average support of 94.8%. Long terminal branches are due to the distinct

scaling used by GBDP’s formula d5. B. gladioli BSR3 was used as outgroup. Red capital letters define subtrees that also occur in the tree depicted in Figure 3.
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FIGURE 3 | Whole-genome phylogeny based on single-copy orthologs of all BGC genomes. The phylogenetic tree was constructed using the WAG protein

substitution model and RAxML and is based on an amino acid alignment with 105,141 positions from 332 single-copy orthologous genes. The percentage of replicate

trees in which the associated taxa clustered together in the bootstrap test (100 replicates) are shown next to the branches if greater than 60%. B. gladioli BSR3 was

used as outgroup. Red capital letters define subtrees that also occur in the tree depicted in Figure 2.

occupy unique positions in the phylogenomic trees and represent
additional novel BGC species.

Cellular Fatty Acid Analysis
The fatty acid profiles of all strains are shown in Table 3.
Branched chain fatty acids have not been reported in members
of the genus Burkholderia and therefore summed features 2 and
3 very likely represent C14:0 3-OH and C16:1 ω7c, respectively
(Yabuuchi et al., 1992). Themain fatty acid components are C16:0,
C18:1 ω7c and summed feature 3 (most probably representing
C16:1 ω7c).

Biochemical Characterization
An overview of biochemical characteristics useful
for distinguishing the BGC species is shown in
Table 4.

DISCUSSION

While soil is a well-known source of free-living Burkholderia
species, these organisms often live in close interaction with
plants, animals, fungi, or amoebae (Marolda et al., 1999; Van
Borm et al., 2002; Kikuchi et al., 2011; Verstraete et al., 2013;
Stopnisek et al., 2016; Xu et al., 2016). The BGC represents a
poorly known line of descent within the genus Burkholderia and
most of the 12 validly named BGC species have been isolated
from soil. Yet, publicly available sequence data indicate that
the taxonomic diversity in this clade is severely underestimated
(Nogales et al., 2001; Salles et al., 2006; Pumphrey and Madsen,
2008; Draghi et al., 2014; Verstraete et al., 2014; Peeters
et al., 2016; Xu et al., 2016). In the present study, gyrB gene
sequence analysis was used to screen our strain collection
and 17 isolates from human and environmental samples were
identified as B. glathei-like bacteria. The gyrB sequence similarity
levels toward other BGC species suggested that the 17 isolates
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TABLE 4 | Differential biochemical characteristics of all examined strains of BGC species.

Characteristic 1 2 3 4 6 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

GROWTH AT

15◦C + + w + + + + + + − + w + + + + + + + + + + + + + + + + +

20◦C + + ND + + + + + + ND ND + + + + + + + + + + + + + + + + + +

37◦C + − + + w − w − − + + − w w + − − − − − − + w w + − w w W

pH 5 − − − + − − − − − − − − − − − − − − − − − − − − − − − − −

pH 6 + + + + + + + + + + + + + w − − − + + − + W w w + + w w −

pH 7 + + + + + + + + + + + + + − + w + w + − − w w w + − + w +

pH 8 − w + + − + − − + w − + − − − − + − + − − − − − − − − − −

HYDROLYSIS OF

Tween 60 + − + ND + - + NG NG + + + + + + + + + + + + + − − + + + + +

Tween 80 − − + + − − − − − + + + − − − − − − − − − − − − − − − − −

API 20NE

Nitrate reduction − + + + − − + − + w + − + + − + + + + − − − − + − − − + −

Urease − − + + − − − − − − − − − − − − − − − − − − − − − − − − −

β-Galactosidase − + − − − − − − w − − + w − − − − w + − − − − − − − − − −

ASSIMILATION OF

Arabinose W + + + w − + − + + w − + + − + w + + + + + + + w + + + w

Mannose + + + + − + + + + + + + + + + + + + + + + + + + + + + + +

Mannitol w + − + w + + + − + + + + + + + + + + + + + + + + + + + +

N-

Acetylglucosamine

+ + + + w + + + + + + + + + + + + + + + + + + + + + + + +

Gluconate + + + + w + + + + + + + + + + + + + + + + + + + + + + + +

Caprate + − + − − w + w − − − − − − − − − − w w w − − + − − + − −

Malate + W + + w + + + + + + + + + + + w + w + + + + + + + + + +

Citrate + − − − − + + + + − w − w − − + w − − + + − w w w − − − −

Phenylacetate + − + − − + + + − + + + + + + + + + + w + + + + w w + + +

ENZYME ACTIVITY (API ZYM)

C4 lipase + + − + w + w + + − + − − + + w − − + + + − + − + + w − w

C8 lipase w + − + + + w w + − w − − w − − − − w − w − − w w w − − w

Valine arylamidase w − − − w − − w − − − − − − − − − − + − w − − − + + − − −

Cystine

arylamidase

− − − − + − − − − − − − − − − − − − w − − − − − − w − − −

β-Galactosidase − + − − − − − − + − − − − − − − − − w − − − − − − − − − −

Species: 1, B. glathei LMG 14190T ; 2, B. sordidicola LMG 22029T ; 3, B. zhejiangensis LMG 27258T ; 4, B. grimmiae R27T ; 5, B. choica LMG 22940T ; 6, B. humi LMG 22934T ; 7, B.

telluris LMG 22936T ; 8, B. terrestris LMG 22937T ; 9, B. udeis LMG 27134T ; 10, B. cordobensis LMG 27620T ; 11, B. jiangsuensis LMG 27927T ; 12, B. megalochromosomata LMG

29263T ; 13, Burkholderia arvi sp. nov. LMG 29317T ; 14, Burkholderia hypogeia sp. nov. LMG 29322T ; 15, Burkholderia ptereochthonis sp. nov. LMG 29326T ; 16, Burkholderia glebae

sp. nov. LMG 29325T and LMG 22938; 17, Burkholderia pedi sp. nov. LMG 29323T and R-52605; 18, Burkholderia arationis sp. nov. LMG 29324T and R-23361; 19, Burkholderia

fortuita sp. nov. LMG 29320T ; 20, Burkholderia temeraria sp. nov. LMG 29319T ; 21, Burkholderia calidae sp. nov. LMG 29321T ; 22, Burkholderia concitans sp. nov. LMG 29315T and

R-46586; 23, Burkholderia turbans sp. nov. LMG 29316T ; 24, Burkholderia catudaia sp. nov. LMG 29318T ; 25, Burkholderia peredens sp. nov. LMG 29314T . Data for B. glathei, B.

sordidicola, B. choica, B. humi, B. telluris, B. terrestris and B. udeis were extracted from Vandamme et al. (2013). Data for B. grimmiae were extracted from Tian et al. (2013). Data for

B. cordobensis and B. zhejiangensis were extracted from Draghi et al. (2014). All other data are from the present study. Test results of the type strains are given first, followed by the

remaining strains in the order given above. +, present; −, absent; w, weak reaction; v, variable; ND, not determined; NG, no growth.

in this study represented 13 novel species (Figure 1). To
further characterize the taxonomic status of these isolates, we
analyzed the genome sequence of 13 isolates representative
for the 13 gyrB sequence clusters and of 7 BGC type strains
and compared those to 23 whole-genome sequences of BGC
strains that were publicly available. Additionally, we also studied
their chemotaxonomic and biochemical properties to comply
with the polyphasic taxonomic consensus approach to bacterial
systematics (Vandamme et al., 1996).

In this genomics era, state-of-the-art sequencing technologies
enable direct access to the information contained in

whole-genome sequences and it is no longer adequate to
deduce genome relatedness through traditional DNA-DNA
hybridization experiments (Vandamme and Peeters, 2014;
Whitman, 2015). Genomic taxonomy can be studied through
various parameters including average nucleotide identity (ANI),
GBDP, Maximal Unique Matches index (MUMi), and core
gene identity (CGI) (Konstantinidis and Tiedje, 2005; Goris
et al., 2007; Deloger et al., 2009; Vanlaere et al., 2009; Meier-
Kolthoff et al., 2013). Although, there is a general consensus
that genome sequencing could revolutionize prokaryotic
systematics (Sutcliffe et al., 2013; Meier-Kolthoff et al., 2014b;
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TABLE 5 | G+C content (mol%) of validly named BGC species.

Strain Wet-lab Calculation

calculation from WGS

B. glathei LMG 14190T 64.8 (Zolg and Ottow, 1975) 64.7

B. sordidicola LMG 22029T 61.3 (Lim et al., 2003) 60.2

B. zhejiangensis OP-1T 59.4 (Lu et al., 2012) 62.7

B. grimmiae R27T 64.6 (Tian et al., 2013) 63.0

B. choica LMG 22940T 63 (Vandamme et al., 2013) 62.7

B. humi LMG 22934T 63 (Vandamme et al., 2013) 62.8

B. telluris LMG 22936T 64 (Vandamme et al., 2013) 64.0

B. terrestris LMG 22937T 62 (Vandamme et al., 2013) 62.6

B. udeis LMG 27134T 60 (Vandamme et al., 2013) 60.0

B. cordobensis LMG 27620T 63.6 (Draghi et al., 2014) 63.7

B. jiangsuensis MP-1T – 62.6

B. megalochromosomata JC2949T – 62.7

Rossello-Mora and Amann, 2015; Thompson et al., 2015),
traditional DDH experiments are still being performed and
new genome-based methods are evaluated in terms of their
correspondence to the existing classifications which are based
on DDH data (Wayne et al., 1987; Stackebrandt et al., 2002).
The GGDC implementation of the GBDP method provides a
quick and reliable alternative to the wet-lab DDH technique
and its dDDH prediction capability (including confidence
intervals) produces classifications which correlate better with the
traditional DDH values than do any of the ANI implementations
(Meier-Kolthoff et al., 2013). Among several advantages, GBDP
is independent from genome annotation, is applicable to both
nucleotide and amino acid data and is immune against problems
caused by incompletely sequenced or low-quality draft genomes.
Finally, GBDP provides branch support values for the resulting
phylogenetic trees (Meier-Kolthoff et al., 2013, 2014a).

We complemented the results of the GBDP analysis with a
whole-genome-based phylogeny based on the sequence analysis
of 332 single-copy orthologous genes in all BGC genomes. This
extended MLSA approach takes only the coding part of the
genomes into account and is therefore not influenced by non-
coding sequences or pseudogenes that might have a different
evolutionary history than the rest of the genome. It depends
however on genome annotation, is unable to cope with problems
caused by incompletely sequenced or low-quality draft genomes,
and its calculations are more compute-intensive and cannot be
carried out incrementally. Although, the GBDP and extended
MLSAmethods used different algorithms, the conclusions drawn
from their phylogenies were consistent thus illustrating the
robustness of whole-genome based taxonomic methods (Colston
et al., 2014).

The GGDC dDDH values and the application of the 70%
dDDH cut-off for species delineation (Supplementary Table 1)
demonstrated that the 13 clusters delineated through gyrB
sequence analysis (Figure 1) represented 13 novel BGC species
and thus confirmed that gyrB gene sequence analysis is a reliable
tool for the identification of Burkholderia species (Tayeb et al.,
2008; Vandamme et al., 2013). Both phylogenomic analyses

identified strain MR1, which was isolated from Florida golf
course soil and which was shown to reduce the herbicide
methylarsenate, as B. concitans sp. nov. Next to strain YI23,
which was previously identified as B. cordobensis by Draghi et al.
(2014), the present study also identified strain RPE67, which was
isolated from the gut of a stink bug, as B. cordobensis. Finally,
both phylogenomic analyses also showed that strain PML1(12),
an ectomycorrhizosphere-inhabiting bacterium with mineral-
weathering ability (Uroz and Oger, 2015), strain S170, a potential
plant growth promoter isolated from coniferous forest soil (Llado
et al., 2014), strain RPE64, a bacterial symbiont of the bean bug
Riptortus pedestris (Shibata et al., 2013) and strain Leaf177, an
Arabidopsis leaf isolate (Bai et al., 2015) all represent novel BGC
species.

Burkholderia genomes vary in size from 3.75 Mb (B.
rhizoxinica HKI 454) to 11.3 Mb (B. terrae BS001), are
characterized by a high G+C content (60–68%) and consist of
multiple replicons (Winsor et al., 2008; Ussery et al., 2009). The
DNA G+C content of the 13 novel species was calculated from
their genome sequences and was in the range of that reported for
other BGC species (60–65 mol%). For 10 of the 12 established
BGC species, the G+C content was previously calculated by
traditional wet-lab methods and the reported values differed by
0.1–3.3 mol% from the values calculated from their genome
sequences (Table 5). As reported by Meier-Kolthoff et al., the
G+C content calculations based on genome sequences show a
higher precision than calculations based on traditional wet-lab
methods because the latter methods do not count nucleotides
but estimate the genomic G+C content based on the physical
properties of the extracted and/or digested genomic DNA
(Meier-Kolthoff et al., 2014b). The difference between literature
data (Lim et al., 2003; Lu et al., 2012; Tian et al., 2013) and the
genome sequence-based G+C content values of B. sordidicola
LMG 22029T, B. zhejiangensis OP-1T and B. grimmiae R27T is
larger than 1% and we therefore present emended descriptions
of these species. The genome sizes of the type strains of the
13 novel species ranged from 6.2 Mb (B. concitans sp. nov.
LMG 29315T) to 9.7 Mb (B. arvi sp. nov. LMG 29317T) and
corresponded with the genome sizes of other free-living BGC
species (Table 2). Consistent with reductive genome evolution in
obligatory symbionts, the smallest BGC genomes belong to the
obligatory leaf endosymbionts (2.4–6.2 Mb; Carlier and Eberl,
2012; Carlier et al., 2015; Pinto-Carbo et al., 2016).

Biochemically, these novel species are similar to their nearest
neighbors. However, tests particularly useful for distinguishing
BGC species are growth at 37◦C and at pH 8, hydrolysis of tween
60 and 80, nitrate reduction, assimilation of arabinose, caprate
and citrate, beta-galactosidase activity and C4 lipase (Table 4).
The most discriminating fatty acids are C16:0 3-OH, C17:0 cyclo,
C19:0 cyclo ω8c and summed features 2 and 3 (Table 3). The
overall fatty acid profiles of the novel taxa are similar to those of
their nearest neighbors and support their placement in the genus
Burkholderia (Yabuuchi et al., 1992).

The present study again underscores the multifaceted
nature of Burkholderia bacteria (Coenye and Vandamme, 2003;
Mahenthiralingam et al., 2005) and highlights that also BGC
species have evolved a broad range of interactions with different
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hosts. B. cordobensis is a striking example of phenotypic and
geographic breadth: it was recovered from agricultural soil in
Argentina (strain LMG 27620T) (Draghi et al., 2014), from golf
course soil in South Korea (strain YI23) (Lim et al., 2012)
and from the gut of the bean bug Riptortus pedestris in Japan
(strain RPE67) (Takeshita et al., 2014). The two latter strains
(YI23 and RPE67) have fenitrothion degrading properties. The
former two strains (LMG 27620T and YI23) were free-living
but the latter (RPE67) is an endosymbiont of stink bugs that
is not vertically transmitted but acquired from soil by the
nymphal insect (Kikuchi et al., 2007). The insecticide resistance
to fenitrothion in the pest insects was shown to be established
by the endosymbiotic Burkholderia strain in the insect gut
(Kikuchi et al., 2012) and was shown to emerge as a consequence
of repeated insecticide use (Tago et al., 2015). The Riptortus
pedestris-B. cordobensis association thus appears to be a rather
young endosymbiosis and contrasts with the symbiosis observed
between plant species of the Rubiaceae and Primulaceae families
and several Candidatus Burkholderia species. The Candidatus
designation is a provisional taxonomic status for organisms that
have been characterized but that cannot be cultivated at present
(Schleifer, 2009). These obligate leaf endosymbionts are vertically
transmitted and represent an obligatory symbiosis which was
estimated to originate millions of years ago (Lemaire et al., 2011).

BGC species harbor both beneficial and pathogenic strains.
Strains PML1(12) and S170 show biotechnological potential for
mineral-weathering and plant growth promotion, respectively,
and are exemplary for the metabolic versatility of Burkholderia
organisms (Llado et al., 2014; Uroz and Oger, 2015). Mineral-
weathering bacteria dissolute key nutrients from minerals and
thereby increase the bioavailability of chemical nutrients in the
environment (Uroz et al., 2009). On the other hand, three strains
analyzed in the present study were isolated from human clinical
samples, i.e., blood, pleural fluid and lung tissue (Table 1) and
were classified as two novel species (Burkholderia concitans sp.
nov. and Burkholderia turbans sp. nov.). They represent, to
our knowledge, the first examples of human clinical isolates in
the B. glathei clade. Strikingly, strain MR1, which was isolated
from Florida golf course soil and shown to reduce the herbicide
methylarsenate, was also identified as Burkholderia concitans sp.
nov., and this species thus represents yet another human clinical
Burkholderia species with interesting biotechnological properties
(Coenye et al., 2001; Coenye and Vandamme, 2003; Goris et al.,
2004;Mahenthiralingam et al., 2005). This study therefore further
underscores that there is no phylogenetic subdivision in the
genus Burkholderia that distinguishes beneficial from pathogenic
strains (Angus et al., 2014; Sawana et al., 2014; Estrada-de los
Santos et al., 2016; Dobritsa and Samadpour, 2016).

In summary, the present study provides genotypic,
chemotaxonomic and phenotypic data which enable the
differentiation of 13 novel species in the genus Burkholderia
and we propose the names Burkholderia arvi sp. nov.,
Burkholderia hypogeia sp. nov., Burkholderia ptereochthonis
sp. nov., Burkholderia glebae sp. nov., Burkholderia pedi sp.
nov., Burkholderia arationis sp. nov., Burkholderia fortuita
sp. nov., Burkholderia temeraria sp. nov., Burkholderia calidae
sp. nov., Burkholderia concitans sp. nov., Burkholderia turbans

sp. nov., Burkholderia catudaia sp. nov. and Burkholderia
peredens sp. nov., with strains LMG 29317T, LMG 29322T,
LMG 29326T, LMG 29325T, LMG 29323T, LMG 29324T, LMG
29320T, LMG 29319T, LMG 29321T, LMG 29315T, LMG 29316T,
LMG 29318T, and LMG 29314T as type strains, respectively.
By making reference cultures and whole-genome sequences
of each of these versatile bacteria publicly available, we aim to
contribute to future knowledge about the metabolic versatility
and pathogenicity of Burkholderia organisms.

Description of Burkholderia arvi sp. nov.
Burkholderia arvi (ar’vi. L. gen. n. arvi of a field).

Cells are Gram-negative, non-motile rods (less than 1 µm
wide and about 1 µm long) with rounded ends that occur
as single units or in pairs. After 48 h of incubation on
trypticase soy agar at 28◦C, colonies are round (typically
less than 1 mm in diameter), smooth, shiny, non-translucent,
with entire margins and a white-creamy color. Grows on
MacConkey agar. Growth occurs at 15–37◦C and at pH 6–7
in NB at 28◦C. Catalase and oxidase activities are present.
Hydrolyses tween 60, but not tween 80, starch and casein.
When tested using API 20NE strips, positive for nitrate
reduction, beta-galactosidase (PNPG) (weak) and assimilation
of glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine,
gluconate, malate, citrate (weak), and phenylacetate; negative
for production of indol, fermentation of glucose, arginine
dihydrolase, urease, esculin hydrolysis, gelatin liquefaction and
assimilation of maltose, caprate, and adipate. When tested
using API ZYM strips, positive for alkaline phosphatase, leucyl
arylamidase, acid phosphatase, and phosphoamidase (weak);
negative for C4 lipase, C8 lipase, C14 lipase, valine arylamidase,
cystine arylamidase, trypsin, chymotrypsin, alpha-galactosidase,
beta-galactosidase, beta-glucuronidase, alpha-glucosidase, beta-
glucosidase, N-acetyl-beta-glucosaminidase, alpha-mannosidase,
and alpha-fucosidase. The following fatty acids are present:
C16:0, C16:0 3-OH, C18:1 ω7c, summed feature 2 (most likely
C14:0 3-OH), and summed feature 3 (most likely C16:1 ω7c) in
moderate amounts (>5%), and C14:0, C16:0 2-OH, C17:0 cyclo,
and C19:0 cyclo ω8c in minor amounts (1–5%).

The type strain is LMG 29317T (=CCUG 68412T) and was
isolated from agricultural soil in Argentina in 2010 (Draghi
et al., 2014). Its G+C content is 62.4 mol% (calculated based on
its genome sequence). The 16S rRNA, gyrB and whole-genome
sequence of LMG 29317T are publicly available through the
accession numbers LT158615, LT158628, and FCOM02000000,
respectively.

Description of Burkholderia hypogeia sp.
nov.
Burkholderia hypogeia (hy.po.ge’ia. Gr. adj. hypogeios
subterraneous; N. L. fem. adj. hypogeia, subterraneous,
earth-born).

Cells are Gram-negative, non-motile rods (about 1 µm
wide and 1–2 µm long) with rounded ends that occur as
single units or in pairs. After 48 h of incubation on trypticase
soy agar at 28◦C, colonies are round (typically less than 1
mm in diameter), smooth, shiny, non-translucent, with entire
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margins and a white-creamy color. Grows on MacConkey
agar. Growth occurs at 15–37◦C and at pH 6 in NB at 28◦C.
Catalase and oxidase activities are present. Hydrolyses tween
60, but not tween 80, starch and casein. When tested using API
20NE strips, positive for nitrate reduction and assimilation of
glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine,
gluconate, malate, and phenylacetate; negative for production
of indol, fermentation of glucose, arginine dihydrolase, urease,
esculin hydrolysis, gelatin liquefaction, beta-galactosidase
(PNPG) and assimilation of maltose, caprate, adipate and
citrate. When tested using API ZYM strips, positive for
alkaline phosphatase (weak), C4 lipase, C8 lipase (weak), leucyl
arylamidase, acid phosphatase and phosphoamidase (weak);
negative for C14 lipase, valine arylamidase, cystine arylamidase,
trypsin, chymotrypsin, alpha-galactosidase, beta-galactosidase,
beta-glucuronidase, alpha-glucosidase, beta-glucosidase,
N-acetyl-beta-glucosaminidase, alpha-mannosidase, and alpha-
fucosidase. The following fatty acids are present: C16:0, C16:0

3-OH, C17:0 cyclo, C18:1ω7c, summed feature 2 (most likely
C14:0 3-OH) and summed feature 3 (most likely C16:1 ω7c) in
moderate amounts (>5%), and C14:0, C16:0 2-OH and C19:0 cyclo
ω8c in minor amounts (1–5%).

The type strain is LMG 29322T (=CCUG 68407T) and was
isolated from greenhouse soil in Belgium in 2014 (Peeters et al.,
2016). Its G+C content is 63.2 mol% (calculated based on its
genome sequence). The 16S rRNA, gyrB and whole-genome
sequence of LMG 29322T are publicly available through the
accession numbers LT158620, LT158633, and FCOA02000000,
respectively.

Description of Burkholderia
ptereochthonis sp. nov.
Burkholderia ptereochthonis (pte.re.o.chtho’nis Gr. n. pteris fern;
Gr. n. chthon soil; N. L. gen. n. ptereochthonis, from fern soil).

Cells are Gram-negative, non-motile rods (less than 1 µm
wide and about 1 µm long) with rounded ends that occur as
single units or in pairs. After 48 h of incubation on trypticase
soy agar at 28◦C, colonies are round (typically less than 1 mm in
diameter), smooth, shiny, non-translucent, with entire margins
and a white-creamy color. Grows on MacConkey agar. Growth
occurs at 15–37◦C and at pH 7 in NB at 28◦C. Catalase and
oxidase activities are present. Hydrolyses tween 60, but not
tween 80, starch and casein. When tested using API 20NE strips,
positive for the assimilation of glucose, mannose, mannitol,
N-acetyl-glucosamine, gluconate, malate, and phenylacetate;
negative for nitrate reduction, production of indol, fermentation
of glucose, arginine dihydrolase, urease, esculin hydrolysis,
gelatin liquefaction, beta-galactosidase (PNPG) and assimilation
of arabinose, maltose, caprate, adipate and citrate. When tested
using API ZYM strips, positive for alkaline phosphatase, C4
lipase, leucyl arylamidase, acid phosphatase and phosphoamidase
(weak); negative for C8 lipase, C14 lipase, valine arylamidase,
cystine arylamidase, trypsin, chymotrypsin, alpha-galactosidase,
beta-galactosidase, beta-glucuronidase, alpha-glucosidase, beta-
glucosidase, N-acetyl-beta-glucosaminidase, alpha-mannosidase,
and alpha-fucosidase. The following fatty acids are present: C16:0,

C16:0 3-OH, C17:0 cyclo, C18:1ω7c, summed feature 2 (most likely
C14:0 3-OH) and summed feature 3 (most likely C16:1 ω7c) in
moderate amounts (>5%), and C14:0, C16:0 2-OH, C16:1 2-OH,
and C19:0 cyclo ω8c in minor amounts (1–5%).

The type strain is LMG 29326T (=CCUG 68403T) and was
isolated from botanical garden soil in Belgium in 2014 (Peeters
et al., 2016). Its G+C content is 64.2 mol% (calculated based on
its genome sequence). The 16S rRNA, gyrB and whole-genome
sequence of LMG 29326T are publicly available through the
accession numbers LT158624, LT158637, and FCOB02000000,
respectively.

Description of Burkholderia glebae sp. nov.
Burkholderia glebae (gle’bae. L. gen. n. glebae from a lump or clod
of earth, soil).

Cells are Gram-negative, non-motile rods (less than 1 µm
wide and about 1 µm long) with rounded ends that occur as
single units or in pairs. After 48 h of incubation on trypticase
soy agar at 28◦C, colonies are round, tiny (typically less than 0.5
mm in diameter), non-translucent, with a white-creamy color.
Grows on MacConkey agar. Growth occurs at 15–28◦C and at
pH 7–8 in NB at 28◦C (for the type strain only at pH 7). Catalase
and oxidase activities are present. Hydrolyses tween 60, but
not tween 80, starch and casein. When tested using API 20NE
strips, positive for nitrate reduction and assimilation of glucose,
arabinose, mannose, mannitol, N-acetyl-glucosamine, gluconate,
malate, citrate, and phenylacetate; negative for production of
indol, fermentation of glucose, arginine dihydrolase, urease,
esculin hydrolysis, gelatin liquefaction, beta-galactosidase
(PNPG) and assimilation of maltose, caprate, and adipate. When
tested using API ZYM strips, positive for leucyl arylamidase,
acid phosphatase and phosphoamidase; negative for C8
lipase, C14 lipase, valine arylamidase, cystine arylamidase,
trypsin, chymotrypsin, alpha-galactosidase, beta-galactosidase,
beta-glucuronidase, alpha-glucosidase, beta-glucosidase,
N-acetyl-beta-glucosaminidase, alpha-mannosidase, and alpha-
fucosidase; strain-dependent reactions for alkaline phosphatase
(type strain negative) and C4 lipase (type strain weak). The
following fatty acids are present in all isolates: C16:0, C16:0

3-OH, C17:0 cyclo, C18:1ω7c, summed feature 2 (most likely
C14:0 3-OH), and summed feature 3 (most likely C16:1ω7c) in
moderate amounts (>5%), and C14:0, C16:0 2-OH, C16:1 2-OH,
and C19:0 cyclo ω8c in minor amounts (1–5%) (mean value of all
isolates).

The type strain is LMG 29325T (=CCUG 68404T) and was
isolated from botanical garden soil in Belgium in 2014 (Peeters
et al., 2016). Its G+C content is 62.7 mol% (calculated based on
its genome sequence). The 16S rRNA, gyrB and whole-genome
sequence of LMG 29325T are publicly available through the
accession numbers LT158623, LT158636, and FCOJ02000000,
respectively. An additional strain has been isolated from soil in
the Netherlands (Table 1).

Description of Burkholderia pedi sp. nov.
Burkholderia pedi (pe’di. Gr. n. pedon soil, earth; N. L. gen. n.
pedi, from soil).
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Cells are Gram-negative, non-motile rods (less than 1 µm
wide and 1–2 µm long) with rounded ends that occur as
single units or in pairs. After 48 h of incubation on trypticase
soy agar at 28◦C, colonies are round (typically less than
1 mm in diameter), smooth, shiny, non-translucent, with
entire margins and a beige color. Grows on MacConkey agar.
Growth occurs at 15–28◦C and at pH 6–8 in NB at 28◦C
(type strain only in pH 6–7). Catalase and oxidase activities
are present. Hydrolyses tween 60, but not tween 80, starch
and casein. When tested using API 20NE strips, positive for
nitrate reduction, beta-galactosidase (PNPG) and assimilation
of glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine,
gluconate, adipate, malate, and phenylacetate; negative for
production of indol, fermentation of glucose, urease, esculin
hydrolysis, gelatin liquefaction and assimilation of maltose and
citrate; strain-dependent reactions for arginine dihydrolase (type
strain negative) and the assimilation of caprate (type strain
negative). When tested using API ZYM strips, positive for
alkaline phosphatase, leucyl arylamidase, acid phosphatase, and
phosphoamidase; negative for C14 lipase, trypsin, chymotrypsin,
alpha-galactosidase, beta-glucuronidase, alpha-glucosidase, beta-
glucosidase, alpha-mannosidase, and alpha-fucosidase; strain-
dependent reactions for C4 lipase (type strain negative), C8 lipase
(type strain negative), valine arylamidase (type strain negative),
cystine arylamidase (type strain negative), beta-galactosidase
(type strain negative), and N-acetyl-beta-glucosaminidase (type
strain negative). The following fatty acids are present in all
isolates: C16:0, C16:0 3-OH, C17:0 cyclo, C18:1ω7c, summed
feature 2 (most likely C14:0 3-OH), and summed feature 3 (most
likely C16:1ω7c) in moderate amounts (>5%), and C14:0, C16:0 2-
OH, C16:1 2-OH, and C19:0 cyclo ω8c in minor amounts (1–5%)
(mean value of all isolates).

The type strain is LMG 29323T (=CCUG 68406T) and was
isolated from greenhouse soil in Belgium in 2014 (Peeters et al.,
2016). Its G+C content is 63.0 mol% (calculated based on its
genome sequence). The 16S rRNA, gyrB, and whole-genome
sequence of LMG 29323T are publicly available through the
accession numbers LT158621, LT158634, and FCOE02000000,
respectively. An additional strain has been isolated from the same
sample (Table 1).

Description of Burkholderia arationis sp.
nov.
Burkholderia arationis (a.ra.ti.o’nis. L. gen. n. arationis from a
field).

Cells are Gram-negative, non-motile rods (less than 1 µm
wide and about 1 µm long) with rounded ends that occur as
single units or in pairs. After 48 h of incubation on trypticase
soy agar at 28◦C, colonies are round (typically less than 1 mm in
diameter), smooth, shiny, translucent, with entire margins and a
white-creamy color. Grows on MacConkey agar. Growth occurs
at 15–28◦C and at pH 6 in NB at 28◦C (the type strain did not
grow in liquid NB medium). Catalase and oxidase activities are
present. Hydrolyses tween 60, but not tween 80, starch and casein.
When tested using API 20NE strips, positive for assimilation
of glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine,

gluconate, caprate (weak), adipate (weak), malate, citrate, and
phenylacetate; negative for nitrate reduction, production of indol,
fermentation of glucose, arginine dihydrolase, urease, esculin
hydrolysis, gelatin liquefaction, beta-galactosidase (PNPG),
and assimilation of maltose. When tested using API ZYM
strips, positive for alkaline phosphatase, C4 lipase, leucyl
arylamidase, acid phosphatase and phosphoamidase; negative
for C14 lipase, cystine arylamidase, trypsin, alpha-galactosidase,
beta-galactosidase, beta-glucuronidase, alpha-glucosidase, beta-
glucosidase, N-acetyl-beta-glucosaminidase, alpha-mannosidase,
and alpha-fucosidase; strain-dependent reactions for C8 lipase
(type strain negative), valine arylamidase (type strain negative),
and chymotrypsin (type strain negative). The following fatty
acids are present in all isolates: C16:0, C16:0 3-OH, C18:1ω7c,
summed feature 2 (most likely C14:0 3-OH), and summed feature
3 (most likely C16:1 ω7c) in moderate amounts (>5%), and C14:0

in minor amounts (1-5%) (mean value of all isolates).
The type strain is LMG 29324T (=CCUG 68405T) and was

isolated from botanical garden soil in Belgium in 2014 (Peeters
et al., 2016). Its G+C content is 62.8 mol% (calculated based on
its genome sequence). The 16S rRNA, gyrB, and whole-genome
sequence of LMG 29324T are publicly available through the
accession numbers LT158622, LT158635, and FCOG02000000,
respectively. An additional strain has been isolated from soil in
the Netherlands (Table 1).

Description of Burkholderia fortuita sp.
nov.
Burkholderia fortuita (for.tu.i’ta. L. fem. adj. fortuita accidental,
unpremeditated; referring to its fortuitous isolation when
searching for Burkholderia caledonica endophytes).

Cells are Gram-negative, non-motile rods (less than 1 µm
wide and about 1 µm long) with rounded ends that occur as
single units or in pairs. After 48 h of incubation on trypticase
soy agar at 28◦C, colonies are round (typically less than 1 mm in
diameter), smooth, shiny, non-translucent, with entire margins
and a beige color. Grows on MacConkey agar. Growth occurs
at 15–37◦C and at pH 6–7 in NB at 28◦C. Catalase and oxidase
activities are present. Hydrolyses tween 60, but not tween 80,
starch and casein. When tested using API 20NE strips, positive
for the assimilation of glucose, arabinose, mannose, mannitol,
N-acetyl-glucosamine, gluconate, malate, and phenylacetate;
negative for nitrate reduction, production of indol, fermentation
of glucose, arginine dihydrolase, urease, esculin hydrolysis,
gelatin liquefaction, beta-galactosidase (PNPG) and assimilation
of maltose, caprate, adipate, and citrate. When tested using
API ZYM strips, positive for alkaline phosphatase (weak), leucyl
arylamidase, acid phosphatase, and phosphoamidase (weak);
negative for C4 lipase, C8 lipase, C14 lipase, valine arylamidase,
cystine arylamidase, trypsin, chymotrypsin, alpha-galactosidase,
beta-galactosidase, beta-glucuronidase, alpha-glucosidase, beta-
glucosidase, N-acetyl-beta-glucosaminidase, alpha-mannosidase,
and alpha-fucosidase. The following fatty acids are present: C16:0,
C16:0 3-OH, C17:0 cyclo, C18:1ω7c, summed feature 2 (most likely
C14:0 3-OH), and summed feature 3 (most likely C16:1 ω7c) in
moderate amounts (>5%), and C14:0, C16:0 2-OH, C16:1 2-OH,
and C19:0 cyclo ω8c in minor amounts (1–5%).
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The type strain is LMG 29320T (=CCUG 68409T) and was
isolated from Fadogia homblei rhizosphere soil in South Africa
in 2013 (Verstraete et al., 2014). Its G+C content is 62.9 mol%
(calculated based on its genome sequence). The 16S rRNA,
gyrB and whole-genome sequence of LMG 29320T are publicly
available through the accession numbers LT158618, LT158631,
and FCNX02000000, respectively.

Description of Burkholderia temeraria sp.
nov.
Burkholderia temeraria (te.me.ra’ri.a. L. fem. adj. temeraria
accidental, inconsiderate; referring to its accidental isolation
when searching for Burkholderia caledonica endophytes).

Cells are Gram-negative, non-motile rods (less than 1 µm
wide and about 1 µm long) with rounded ends that occur
as single units or in pairs. After 48 h of incubation on
trypticase soy agar at 28◦C, colonies are round (typically
less than 1 mm in diameter), smooth, shiny, non-translucent,
with entire margins and a white-creamy color. Grows on
MacConkey agar. Growth occurs at 15–37◦C and at pH
6–7 in NB at 28◦C. Catalase and oxidase activities are
present. Does not hydrolyze tween 60, tween 80, starch and
casein. When tested using API 20NE strips, positive for
the assimilation of glucose, arabinose, mannose, mannitol,
N-acetyl-glucosamine, gluconate, malate, citrate (weak), and
phenylacetate; negative for nitrate reduction, production of indol,
fermentation of glucose, arginine dihydrolase, urease, esculin
hydrolysis, gelatin liquefaction, beta-galactosidase (PNPG) and
assimilation of maltose, caprate, and adipate. When tested using
API ZYM strips, positive for alkaline phosphatase, C4 lipase,
leucyl arylamidase, acid phosphatase, and phosphoamidase
(weak); negative for C8 lipase, C14 lipase, valine arylamidase,
cystine arylamidase, trypsin, chymotrypsin, alpha-galactosidase,
beta-galactosidase, beta-glucuronidase, alpha-glucosidase, beta-
glucosidase, N-acetyl-beta-glucosaminidase, alpha-mannosidase,
and alpha-fucosidase. The following fatty acids are present: C16:0,
C16:0 3-OH, C17:0 cyclo, C18:1ω7c, summed feature 2 (most likely
C14:0 3-OH) and summed feature 3 (most likely C16:1 ω7c) in
moderate amounts (>5%), and C14:0, C16:0 2-OH, and C19:0 cyclo
ω8c in minor amounts (1–5%).

The type strain is LMG 29319T (=CCUG 68410T) and was
isolated from Fadogia homblei rhizosphere soil in South Africa
in 2013 (Verstraete et al., 2014). Its G+C content is 62.7 mol%
(calculated based on its genome sequence). The 16S rRNA,
gyrB and whole-genome sequence of LMG 29319T are publicly
available through the accession numbers LT158617, LT158630,
and FCOI02000000, respectively.

Description of Burkholderia calidae sp.
nov.
Burkholderia calidae (ca’li.dae. L. gen. n. calidae from warm
water, because this strain was isolated from pond water in a
tropical garden).

Cells are Gram-negative, non-motile rods (about 1 µm
wide and 1 µm long) with rounded ends that occur as single
units or in pairs. After 48 h of incubation on trypticase
soy agar at 28◦C, colonies are round (typically about 1

mm in diameter), smooth, shiny, non-translucent, with entire
margins and a white-creamy color. Grows on MacConkey
agar. Growth occurs at 15–37◦C and at pH 6–7 in NB at
28◦C. Catalase and oxidase activities are present. Does not
hydrolyze tween 60, tween 80, starch and casein. When tested
using API 20NE strips, positive for nitrate reduction and
assimilation of glucose, arabinose, mannose, mannitol, N-acetyl-
glucosamine, gluconate, caprate, malate, citrate (weak), and
phenylacetate; negative for production of indol, fermentation
of glucose, arginine dihydrolase, urease, esculin hydrolysis,
gelatin liquefaction, beta-galactosidase (PNPG) and assimilation
of maltose and adipate. When tested using API ZYM strips,
positive for alkaline phosphatase (weak), C8 lipase (weak), leucyl
arylamidase (weak), acid phosphatase and phosphoamidase
(weak); negative for C4 lipase, C14 lipase, valine arylamidase,
cystine arylamidase, trypsin, chymotrypsin, alpha-galactosidase,
beta-galactosidase, beta-glucuronidase, alpha-glucosidase, beta-
glucosidase, N-acetyl-beta-glucosaminidase, alpha-mannosidase,
and alpha-fucosidase. The following fatty acids are present:
C16:0, C18:1ω7c, summed feature 2 (most likely C14:0 3-OH) and
summed feature 3 (most likely C16:1 ω7c) in moderate amounts
(>5%), and C14:0, C16:0 2-OH, C16:0 3-OH, and C17:0 cyclo in
minor amounts (1–5%).

The type strain is LMG 29321T (=CCUG 68408T) and was
isolated from greenhouse pond water in Belgium in 2013 (Peeters
et al., 2016). Its G+C content is 62.5 mol% (calculated based on
its genome sequence). The 16S rRNA, gyrB and whole-genome
sequence of LMG 29321T are publicly available through the
accession numbers LT158619, LT158632, and FCOX02000000,
respectively.

Description of Burkholderia concitans sp.
nov.
Burkholderia concitans (con.ci’tans. L. fem. part. pres. concitans
disturbing, upsetting; because the isolation of this bacterium
from human sources, including blood, further disturbs the image
of this lineage of Burkholderia species as benign bacteria).

Cells are Gram-negative, non-motile rods (less than 1 µm
wide and about 1 µm long) with rounded ends that occur as
single units or in pairs. After 48 h of incubation on trypticase
soy agar at 28◦C, colonies are round (typically less than 1
mm in diameter), smooth, shiny, non-translucent, with entire
margins and a white-creamy color. Grows on MacConkey agar.
Growth occurs at 15–28◦C (additionally, the type strains grows
at 37◦C) and at pH 6–7 in NB at 28◦C. Catalase and oxidase
activities are present. Hydrolyses tween 60, but not tween 80,
starch and casein. When tested using API 20NE strips, positive
for the assimilation of glucose, arabinose, mannose, mannitol,
N-acetyl-glucosamine, gluconate, malate, and phenylacetate;
negative for nitrate reduction, production of indol, fermentation
of glucose, arginine dihydrolase, urease, esculin hydrolysis,
gelatin liquefaction, beta-galactosidase (PNPG) and assimilation
of maltose, caprate, and adipate; strain-dependent reactions
for the assimilation of citrate (type strain weak). When tested
using API ZYM strips, positive for alkaline phosphatase, C4
lipase, C8 lipase (weak), leucyl arylamidase, valine arylamidase,
acid phosphatase, and phosphoamidase; negative for C14 lipase,
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trypsin, chymotrypsin, alpha-galactosidase, beta-galactosidase,
beta-glucuronidase, alpha-glucosidase, beta-glucosidase,
N-acetyl-beta-glucosaminidase, alpha-mannosidase, and alpha-
fucosidase; strain-dependent reactions for cystine arylamidase
(type strain negative). The following fatty acids are present in
all isolates: C16:0, C16:0 3-OH, C17:0 cyclo, C18:1ω7c, C19:0 cyclo
ω8c, summed feature 2 (most likely C14:0 3-OH) and summed
feature 3 (most likely C16:1 ω7c) in moderate amounts (>5%),
and C14:0, C16:0 2-OH, and C16:1 2-OH in minor amounts
(1–5%) (mean value of all isolates).

The type strain is LMG 29315T (=CCUG 68414T) and was
isolated from human lung tissue in the USA in 2006. Its G+C
content is 63.2 mol%. The 16S rRNA, gyrB, and whole-genome
sequence of LMG 29315T are publicly available through the
accession numbers LT158613, LT158626 and FCNV02000000,
respectively. An additional strain has been isolated from human
blood in the USA in 2010 (Table 1).

Description of Burkholderia turbans sp.
nov.
Burkholderia turbans (tur’bans. L. fem. part. pres. turbans
disturbing, agitating, because the isolation of this bacterium from
human pleural fluid further disturbs the image of this lineage of
Burkholderia species as benign bacteria).

Cells are Gram-negative, non-motile rods (about 1 µm wide
and 1–1.5 µm long) with rounded ends that occur as single units
or in pairs. After 48 h of incubation on trypticase soy agar at
28◦C, colonies are round (typically less than 1 mm in diameter),
smooth, shiny, non-translucent, with entire margins and a white-
creamy color. Grows on MacConkey agar. Growth occurs at 15–
37◦C and at pH 6–7 in NB at 28◦C. Catalase and oxidase activities
are present. Hydrolyses tween 60, but not tween 80, starch and
casein. When tested using API 20NE strips, positive for the
assimilation of glucose, arabinose, mannose, mannitol, N-acetyl-
glucosamine, gluconate, caprate, malate, and phenylacetate;
negative for nitrate reduction, production of indol, fermentation
of glucose, arginine dihydrolase, urease, esculin hydrolysis,
gelatin liquefaction, beta-galactosidase (PNPG) and assimilation
of maltose, adipate and citrate. When tested using API ZYM
strips, positive for alkaline phosphatase, C4 lipase (weak),
leucyl arylamidase, acid phosphatase, and phosphoamidase
(weak); negative for C8 lipase, C14 lipase, valine arylamidase,
cystine arylamidase, trypsin, chymotrypsin, alpha-galactosidase,
beta-galactosidase, beta-glucuronidase, alpha-glucosidase, beta-
glucosidase, N-acetyl-beta-glucosaminidase, alpha-mannosidase,
and alpha-fucosidase. The following fatty acids are present: C16:0,
C17:0 cyclo, C18:1ω7c, summed feature 2 (most likely C14:0 3-
OH) and summed feature 3 (most likely C16:1 ω7c) in moderate
amounts (>5%), and C14:0, C16:0 2-OH, C16:0 3-OH, C16:1 2-OH,
and C19:0 cyclo ω8c in minor amounts (1–5%).

The type strain is LMG 29316T (=CCUG 68413T) and was
isolated from human pleural fluid in the USA in 2006. Its G+C
content is 63.1 mol% (calculated based on its genome sequence).
The 16S rRNA, gyrB and whole-genome sequence of LMG
29316T are publicly available through the accession numbers
LT158614, LT158627, and FCOD02000000, respectively.

Description of Burkholderia catudaia sp.
nov.
Burkholderia catudaia (ca.tu.da’ia. Gr. adj. catudaios
subterraneous; N. L. fem. adj. catudaia, earth-born).

Cells are Gram-negative, non-motile rods (about 1 µm wide
and 1–2 µm long) with rounded ends that occur as single units
or in pairs. After 48 h of incubation on trypticase soy agar at
28◦C, colonies are round (typically less than 1 mm in diameter),
smooth, shiny, non-translucent, with entire margins and a white-
creamy color. Grows on MacConkey agar. Growth occurs at
15–37◦C and at pH 6–7 in NB at 28◦C. Catalase and oxidase
activities are present. Hydrolyses tween 60, but not tween 80,
starch and casein. When tested using API 20NE strips, positive
for nitrate reduction and assimilation of glucose, arabinose,
mannose, mannitol, N-acetyl-glucosamine, gluconate, malate,
and phenylacetate; negative for production of indol, fermentation
of glucose, arginine dihydrolase, urease, esculin hydrolysis,
gelatin liquefaction, beta-galactosidase (PNPG) and assimilation
of maltose, caprate, adipate, and citrate. When tested using
API ZYM strips, positive for alkaline phosphatase (weak), leucyl
arylamidase, acid phosphatase, and phosphoamidase (weak);
negative for C4 lipase, C8 lipase, C14 lipase, valine arylamidase,
cystine arylamidase, trypsin, chymotrypsin, alpha-galactosidase,
beta-galactosidase, beta-glucuronidase, alpha-glucosidase, beta-
glucosidase, N-acetyl-beta-glucosaminidase, alpha-mannosidase,
and alpha-fucosidase. The following fatty acids are present: C16:0,
C16:0 3-OH, C18:1ω7c, summed feature 2 (most likely C14:0 3-
OH) and summed feature 3 (most likely C16:1 ω7c) in moderate
amounts (>5%), and C14:0, C16:0 2-OH, C17:0 cyclo, and C19:0

cyclo ω8c in minor amounts (1–5%).
The type strain is LMG 29318T (=CCUG 68411T) and was

isolated from Fadogia homblei rhizosphere soil in South Africa
in 2013 (Verstraete et al., 2014). Its G+C content is 62.8 mol%
(calculated based on its genome sequence). The 16S rRNA,
gyrB and whole-genome sequence of LMG 29318T are publicly
available through the accession numbers LT158616, LT158629,
and FCOF02000000, respectively.

Description of Burkholderia peredens sp.
nov.
Burkholderia peredens (per.e’dens. L. fem. part. pres. peredens
consuming, devouring; referring to the capacity of this bacterium
to degrade fenitrothion).

Cells are Gram-negative, non-motile rods (about 1 µm wide
and 1–2 µm long) with rounded ends that occur as single
units or in pairs. After 48 h of incubation on trypticase soy
agar at 28◦C, colonies are round (typically less than 1 mm in
diameter), smooth, shiny, non-translucent, with entire margins
and a white-creamy color. Grows on MacConkey agar. Growth
occurs at 15–37◦C and at pH 7 in NB at 28◦C. Catalase and
oxidase activities are present. Hydrolyses tween 60, but not
tween 80, starch and casein. When tested using API 20NE
strips, positive for the assimilation of glucose, arabinose (weak),
mannose, mannitol, N-acetyl-glucosamine, gluconate, malate,
and phenylacetate; negative for nitrate reduction, production
of indol, fermentation of glucose, arginine dihydrolase, urease,
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esculin hydrolysis, gelatin liquefaction, beta-galactosidase
(PNPG) and assimilation of maltose, caprate, adipate, and
citrate. When tested using API ZYM strips, positive for
alkaline phosphatase, C4 lipase (weak), C8 lipase (weak), leucyl
arylamidase, acid phosphatase, and phosphoamidase (weak);
negative for C14 lipase, valine arylamidase, cystine arylamidase,
trypsin, chymotrypsin, alpha-galactosidase, beta-galactosidase,
beta-glucuronidase, alpha-glucosidase, beta-glucosidase,
N-acetyl-beta-glucosaminidase, alpha-mannosidase, and alpha-
fucosidase. The following fatty acids are present: C16:0, C16:0

3-OH, C18:1ω7c, summed feature 2 (most likely C14:0 3-OH) and
summed feature 3 (most likely C16:1 ω7c) in moderate amounts
(>5%), and C14:0, C16:0 2-OH, C16:1 2-OH and C17:0 cyclo in
minor amounts (1–5%).

The type strain is LMG 29314T (=CCUG 68415T) and was
isolated from soil in Japan (Hayatsu et al., 2000). Its G+C content
is 63.1 mol% (calculated based on its genome sequence). The
16S rRNA, gyrB and whole-genome sequence of LMG 29314T

are publicly available through the accession numbers LT158612,
LT158625, and FCOH02000000, respectively.

Emended Description of the Species
Burkholderia sordidicola (Lim et al., 2003)
The description of the species Burkholderia sordidicola is the one
given by Lim et al. (2003) with the following modification. The
G+C content of the type strain is 60.2%.

Emended Description of the Species
Burkholderia zhejiangensis (Lu et al., 2012)
The description of the species Burkholderia zhejiangensis is the
one given by Lu et al. (2012) with the following modification. The
G+C content of the type strain is 62.7%.

Emended Description of the Species
Burkholderia grimmiae (Tian et al., 2013)
The description of the species Burkholderia grimmiae is the one
given by Tian et al. (2013) with the following modification. The
G+C content of the type strain is 63.0%.
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