3,497,538 research outputs found

    Influence of Visual Feedback On Dynamic Balance Control in Chronic Stroke Survivors

    Get PDF
    Chronic stroke survivors have an increased incidence of falls during walking, suggesting changes in dynamic balance control post-stroke. Despite this increased incidence of falls during walking, balance control is often studied only in standing. The purpose of this study was to quantify deficits in dynamic balance control during walking, and to evaluate the influence of visual feedback on this control in stroke survivors. Ten individuals with chronic stroke, and ten neurologically intact individuals participated in this study. Walking performance was assessed while participants walked on an instrumented split-belt treadmill with different types of visual feedback. Dynamic balance control was quantified using both the extent of center of mass (COM) movement in the frontal plane over a gait cycle (COM sway), and base of support (step width). Stroke survivors walked with larger COM sway and wider step widths compared to controls. Despite these baseline differences, both groups walked with a similar ratio of step width to COM sway (SW/COM). Providing a stationary target with a laser reference of body movement reduced COM sway only in the stroke group, indicating that visual feedback of sway alters dynamic balance control post-stroke. These results demonstrate that stroke survivors attempt to maintain a similar ratio of step width to COM movement, and visual cues can be used to help control COM movement during walking post-stroke

    Trunk motion visual feedback during walking improves dynamic balance in older adults: Assessor blinded randomized controlled trial.

    Get PDF
    BACKGROUND: Virtual reality and augmented feedback have become more prevalent as training methods to improve balance. Few reports exist on the benefits of providing trunk motion visual feedback (VFB) during treadmill walking, and most of those reports only describe within session changes. RESEARCH QUESTION: To determine whether trunk motion VFB treadmill walking would improve over-ground balance for older adults with self-reported balance problems. METHODS: 40 adults (75.8 years (SD 6.5)) with self-reported balance difficulties or a history of falling were randomized to a control or experimental group. Everyone walked on a treadmill at a comfortable speed 3×/week for 4 weeks in 2 min bouts separated by a seated rest. The control group was instructed to look at a stationary bulls-eye target while the experimental group also saw a moving cursor superimposed on the stationary bulls-eye that represented VFB of their walking trunk motion. The experimental group was instructed to keep the cursor in the center of the bulls-eye. Somatosensory (monofilaments and joint position testing) and vestibular function (canal specific clinical head impulses) was evaluated prior to intervention. Balance and mobility were tested before and after the intervention using Berg Balance Test, BESTest, mini-BESTest, and Six Minute Walk. RESULTS: There were no significant differences between groups before the intervention. The experimental group significantly improved on the BESTest (p = 0.031) and the mini-BEST (p = 0.019). The control group did not improve significantly on any measure. Individuals with more profound sensory impairments had a larger improvement on dynamic balance subtests of the BESTest. SIGNIFICANCE: Older adults with self-reported balance problems improve their dynamic balance after training using trunk motion VFB treadmill walking. Individuals with worse sensory function may benefit more from trunk motion VFB during walking than individuals with intact sensory function

    Multi-component Force Balance Control Systems Final Report

    Get PDF
    Technique and apparatus for drag, lift, and pitch force measurements in hypersonic wind tunnel

    Interventions to Promote More Effective Balance-Recovery Reactions in Industrial Settings: New Perspectives on Footwear and Handrails

    Get PDF
    “Change-in-support” balance-recovery reactions that involve rapid stepping or reaching movements play a critical role in preventing falls. Recent geriatrics studies have led to new interventions to improve ability to execute these reactions effectively. Some of these interventions have the potential to reduce fall risk for younger persons working in industrial settings. In this paper, we review research pertaining to two such interventions: 1) balance-enhancing footwear insoles designed to improve stepping reactions, and 2) proximity-triggered handrail cueing systems designed to improve reach-to-grasp reactions. The insole has a raised ridge around the perimeter that is intended to improve balance control by providing increased stimulation of sensory receptors on the footsole in situations where loss of balance may be imminent. The cueing system uses flashing lights and/or verbal prompts to attract attention to the handrail and ensure that the brain registers its location, thereby facilitating more rapid and accurate grasping of the rail if and when sudden loss of balance occurs. Results to date support the efficacy of both interventions in geriatric populations. There is also some evidence that these interventions may improve balance control in younger persons; however, further research is needed to confirm their efficacy in preventing falls in industrial settings

    Inverted Pendulum Human Transporter Balance Control System Based on Proportional Integral Derivative – Active Force Control

    Get PDF
    Many research for the balancing of inverted pendulum control system to develop the performance. This paper will simulate a Proportional Integral Derivative – Active Force Control (PID-ACF) methods to swing a pendulum attached to a cart from an initial downwards position to an upright position and keep that condition stable and implemented to the segway chair human transporter. The combined control between PID and AFC system is used to maintain the actual acceleration is affected by disruption of the references given, because external disturbance can affect the system. For the experimental it will compare the performance between using a classical control PID and PID-AFC

    Physical activity programs for balance and fall prevention in elderly: A systematic review

    Get PDF
    BACKGROUND: Due to demographic changes the world's population is progressively ageing. The physiological decay of the elderly adult may lead to a reduction in the ability to balance and an increased risk of falls becoming an important issue among the elderly. In order to counteract the decay in the ability to balance, physical activity has been proven to be effective. The aim of this study is to systematically review the scientific literature in order to identify physical activity programs able to increase balance in the elderly. METHODS: This review is based on the data from Medline-NLM, Pubmed, ScienceDirect, and SPORTDiscuss and includes randomized control trials that have analyzed balance and physical activity in healthy elderly over 65 years of age during the last decade. A final number of 8 manuscripts were included in the qualitative synthesis, which comprised 200 elderly with a mean age of 75.1 ± 4.4 years. The sample size of the studies varied from 9 to 61 and the intervention periods from 8 to 32 weeks. RESULTS: Eight articles were considered eligible and included in the quantitative synthesis. The articles investigated the effects of resistance and aerobic exercise, balance training, T-bow© and wobble board training, aerobic step and stability ball training, adapted physical activity and Wii Fit training on balance outcomes. Balance measures of the studies showed improvements between 16% and 42% compared to baseline assessments. CONCLUSIONS: Balance is a multifactorial quality that can be effectively increased by different exercise training means. It is fundamental to promote physical activity in the aging adult, being that a negative effect on balance performance has been seen in the no-intervention control groups
    corecore