40,606 research outputs found

    Zero-dimensional chemical kinetic simulation of ROS/RNSin pulsed pulsed-discharge exposed water

    Get PDF
    The concentration variations of reactive oxygen/nitrogen species in water, such as H2O2, NO2 −, and NO3 − generated by pulsed-discharge plasma exposure, are calculated using reaction rates of chemical reactions and acid-base equilibrium in water. The calculated concentrations and pH values are in good agreement with measured data within the range where the significant changes of the measured data are observed. The rate constant for ONOOH generation is estimated to be 7.8 × 103 M−2 s−1, and this value is in good agreement with previously reported values. The generation rates of H2O2, NO2 −, and NO3 − are estimated to be 7.70 × 10−7, 4.10 × 10−7, and 1.10 × 10−7 M s−1, respectively

    Functional characterization of a short peptidoglycan recognition protein from Chinese giant salamander (Andrias davidianus)

    Get PDF
    This work was supported by the National Natural Science Foundation of China (Grant no. 31302221, 31172408 and 31272666) and Jiangsu Province (Grant no. BK20171274 and BK2011418), and partially by the Opening Project of Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland (Grant no. K2016-08). QZ was supported by the “Qinglan” project of Jiangsu province of China.Peer reviewedPublisher PD

    Bordetella parapertussis Survives inside Human Macrophages in Lipid Raft-Enriched Phagosomes

    Get PDF
    Bordetella parapertussis is a human pathogen that causes whooping cough. The increasing incidence of B. parapertussis has been attributed to the lack of cross protection induced by pertussis vaccines. It was previously shown that B. parapertussis is able to avoid bacterial killing by polymorphonuclear leukocytes (PMN) if specific opsonic antibodies are not present at the site of interaction. Here, we evaluated the outcome of B. parapertussis innate interaction with human macrophages, a less aggressive type of cell and a known reservoir of many persistent pathogens. The results showed that in the absence of opsonins, O antigen allows B. parapertussis to inhibit phagolysosomal fusion and to remain alive inside macrophages. The O antigen targets B. parapertussis to lipid rafts that are retained in the membrane of phagosomes that do not undergo lysosomal maturation. Forty-eight hours after infection, wild-type B. parapertussis bacteria but not the O antigen-deficient mutants were found colocalizing with lipid rafts and alive in nonacidic compartments. Taken together, our data suggest that in the absence of opsonic antibodies, B. parapertussis survives inside macrophages by preventing phagolysosomal maturation in a lipid raft- and O antigen-dependent manner. Two days after infection, about 15% of macrophages were found loaded with live bacteria inside flotillin-enriched phagosomes that had access to nutrients provided by the host cell recycling pathway, suggesting the development of an intracellular infection. IgG opsonization drastically changed this interaction, inducing efficient bacterial killing. These results highlight the need for B. parapertussis opsonic antibodies to induce bacterial clearance and prevent the eventual establishment of cellular reservoirs of this pathogen.Fil: Gorgojo, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Harvill, Eric. State University of Pennsylvania; Estados UnidosFil: Rodriguez, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentin

    PPH dendrimers grafted on silica nanoparticles: surface chemistry, characterization, silver colloids hosting and antibacterial activity

    Get PDF
    Polyphosphorhydrazone (PPH) dendrimers have been grafted on silica nanoparticles, and the surface functions of the dendrimers have been derivatized to phosphonates with lateral poly(ethyleneglycol) (PEG) chains. All materials have been thoroughly characterized by MAS NMR, FT-IR, electron microscopy, TGA and elemental analysis. These materials successfully hosted silver and silver oxide nanoparticles. The resulting composites exhibit antibacterial activity

    How innate immunity proteins kill bacteria and why they are not prone to resistance

    Get PDF
    Recent advances on antibacterial activity of peptidoglycan recognition proteins (PGRPs) offer some insight into how innate immunity has retained its antimicrobial effectiveness for millions of years with no frequent emergence of resistant strains. First, PGRP can bind to multiple components of bacterial envelope (peptidoglycan, lipoteichoic acid, and lipopolysaccharide). Second, PGRP simultaneously induces oxidative, thiol, and metal stress responses in bacteria, which individually are bacteriostatic, but in combination are bactericidal. Third, PGRP induces oxidative, thiol, and metal stress responses in bacteria through three independent pathways. Fourth, antibacterial effects of PGRP are enhanced by other innate immune responses. Thus, emergence of PGRP resistance is prevented by bacteriostatic effect and independence of each PGRP-induced stress response, as PGRP resistance would require simultaneous acquisition of three separate mechanisms disabling the induction of all three stress responses. By contrast, each antibiotic has one primary target and one primary antibacterial mechanism, and for this reason resistance to antibiotics can be generated by inhibition of this primary mechanism. Manipulating bacterial metabolic responses can enhance bacterial killing by antibiotics and elimination of antibiotic-tolerant bacteria, but such manipulations do not overcome genetically encoded antibiotic resistance. Pathogens cause infections by evading, inhibiting, or subverting host immune responses

    How endo- is endo-?: surface sterilization of delicate samples: a Bryopsis (Bryopsidales, Chlorophyta) case study

    Get PDF
    In the search for endosymbiotic bacteria, elimination of ectosymbionts is a key point of attention. Commonly, the surface of the host itself or the symbiotic structures are sterilized with aggressive substances such as chlorine or mercury derivatives. Although these disinfectants are adequate to treat many species, they are not suitable for surface sterilization of delicate samples. In order to study the bacterial endosymbionts in the marine green alga Bryopsis, the host plant's cell wall was mechanically, chemically and enzymatically cleaned. Merely a chemical and enzymatical approach proved to be highly effective. Bryopsis thalli treated with cetyltrimethylammonium bromide (CTAB) lysis buffer, proteinase K and bactericidal cleanser Umonium Master showed no bacterial growth on agar plates or bacterial fluorescence when stained with a DNA fluorochrome. Moreover, the algal cells were intact after sterilization, suggesting endophytic DNA is still present within these algae. This new surface sterilization procedure opens the way to explore endosymbiotic microbial communities of other, even difficult to handle, samples

    Lactoferrin. A natural glycoprotein involved in iron and inflammatory homeostasis

    Get PDF
    Human lactoferrin (hLf), an iron-binding multifunctional cationic glycoprotein secreted by exocrine glands and by neutrophils, is a key element of host defenses. HLf and bovine Lf (bLf), possessing high sequence homology and identical functions, inhibit bacterial growth and biofilm dependently from iron binding ability while, independently, bacterial adhesion to and the entry into cells. In infected/inflamed host cells, bLf exerts an anti-inflammatory activity against interleukin-6 (IL-6), thus up-regulating ferroportin (Fpn) and transferrin receptor 1 (TfR1) and down-regulating ferritin (Ftn), pivotal actors of iron and inflammatory homeostasis (IIH). Consequently, bLf inhibits intracellular iron overload, an unsafe condition enhancing in vivo susceptibility to infections, as well as anemia of inflammation (AI), re-establishing IIH. In pregnant women, affected by AI, bLf oral administration decreases IL-6 and increases hematological parameters. This surprising effect is unrelated to iron supplementation by bLf (80 µg instead of 1-2 mg/day), but to its role on IIH. AI is unrelated to the lack of iron, but to iron delocalization: cellular/tissue overload and blood deficiency. BLf cures AI by restoring iron from cells to blood through Fpn up-expression. Indeed, anti-inflammatory activity of oral and intravaginal bLf prevents preterm delivery. Promising bLf treatments can prevent/cure transitory inflammation/anemia/oral pathologies in athletes
    corecore