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The concentration variations of reactive oxygen/nitrogen species in water, such as H2O2, 

NO2
−, and NO3

− generated by pulsed-discharge plasma exposure, are calculated using 

reaction rates of chemical reactions and acid-base equilibrium in water. The calculated 

concentrations and pH values are in good agreement with measured data within the range 

where the significant changes of the measured data are observed. The rate constant for 

ONOOH generation is estimated to be 7.8×103 M−2·s−1, and this value is in good agreement 

with previously reported values. The generation rates of H2O2, NO2
−, and NO3

− are estimated 

to be 7.70×10−7, 4.10×10−7, and 1.10×10−7 M·s−1, respectively. 
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1. Introduction 

Discharge plasma in contact with water and in water vapor has been recently applied to a 

wide range of applications, such as biomolecule decontamination1), nanoparticle synthesis2), 

plant growth promoting3), the degradation of organic compounds4,5), disinfection6-15), and the 

treatment of cancer cells.16,17) In general, active species, such as electrons, ions, radicals, and 

reactive neutral species, are generated in plasma, and these species dissolve in water when 

the plasma is generated in contact with the water. Then, reactive oxygen species (ROS), such 

as H2O2 and HO2, are generated in the water, and reactive nitrogen species (RNS), such as 

HNO2 and ONOOH, are also generated when nitrogen gas is contained in the ambient and/or 

dissolved gases. The water containing ROS/RNS is well known as plasma-treated water8-12), 

which is also called plasma-activated water13-15) and plasma-activated medium.16,17) Since 

ROS/RNS have high oxidation potential, these potentially contribute to bactericidal 

applications, and the bactericidal mechanisms induced by ROS/RNS in plasma-treated water 

has been partially elucidated. Ikawa et al.11) exposed distilled water to low-temperature 

atmospheric pressure helium plasma, demonstrated the bactericidal activity of ROS/RNS in 

the water by mixing with Escherichia coli suspension, and reported that the bactericidal 

activity is enhanced under acidic conditions. It was suggested that HO2 released from 

O2NOOH plays an important role in imparting the bactericidal activity to the water. It was 

also suggested that O2NOOH is generated by the reaction between ONOOH and H2O2, and 

that ONOOH is generated from HNO2 and H2O2. Some of these species are in equilibrium 

with those conjugate base in water; therefore, the pH value of the water significantly affect 

the concentrations of acid and its conjugated base. 

Several groups reported ROS/RNS concentrations in water exposed to plasma with the 

biocidal effects and oxidative strength of those species. Gils et al.12) produced plasma-treated 

water using an atmospheric pressure argon plasma jet for inactivation of Pseudomonas 

aeruginosa, and reported the significant influence of the acidity of the plasma-treated water 

on bactericidal effect. They also calculated ROS/RNS concentrations in the liquid phase 

using zero-dimensional solution kinetics simulations, estimated the flux of O3, NO, and OH, 

and compared the calculated concentrations of H2O2, NO2
−, and NO3

− with those measured 

concentrations; however, the chemical equilibrium of species and the reactions of long-lived 

species (e.g. the reaction between HNO2 and H2O2) are not considered. Lukes et al.13) 

reported the concentrations of H2O2, NO2
−, and NO3

− in plasma-exposed water as functions 

of treatment time and post-discharge time, and that the bactericidal effects of the water is 

enhanced under acidic conditions. They also reported the rate constant for ONOOH 
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generation, estimated by a kinetic study of post-discharge processes in pH-buffered aqueous 

solution. Anderson et al.5) exposed a pH-buffered aqueous solution containing indigo 

carmine to non-equilibrium atmospheric-pressure plasma, and estimated the branching ratios 

of OH/NO2 and NO3
−/H+ generation through ONOOH decomposition. Hence, the 

bactericidal effects and oxidative strength of ROS/RNS and the reactions of ROS/RNS have 

been well investigated; however, ROS/RNS concentration variations in plasma-exposed 

water accompanied with the pH variation of the water, caused by dissolving ROS/RNS in 

the water, have not yet been fully reproduced by solution kinetics simulation, and it 

contributes to predicting the reactions of ROS/RNS and estimating the generation rate of 

ROS/RNS in the liquid phase. 

In this work, the variations of ROS/RNS concentrations and pH value in water exposed 

to plasma were calculated by using reaction rates based on acid-base equilibrium and 

chemical reactions. Our previous work18) suggested that various discharge plasmas above 

water, which are a pulsed discharge, a DC corona discharge, and a plasma jet, generate H2O2, 

NO2
−, and NO3

− in the water, and discussed the generation process of those species in the 

gas and liquid phase; however, measurement conditions in the previous work, such as post-

discharge time to start analysing plasma-exposed water, were not necessarily the same. Thus, 

the ROS/RNS concentrations and pH value in water exposed to the pulsed-discharge plasma, 

which is effective in ROS/RNS generation using the plasmas, were remeasured under the 

unified conditions in this work. Then, the variations of ROS/RNS concentrations and pH 

value in the water were calculated by using reaction rates of chemical reactions in water. 

 

2. Experimental apparatus and conditions 

The pulsed discharge was generated in the same manner as in our previous work.18) A 

cylindrical discharge chamber to generate the pulsed discharge consisted of a needle 

electrode and a water bath electrode. The needle electrode was a stainless-steel needle with 

4.0 mm in diameter and 35 mm in length, and the water bath electrode was made of stainless 

steel with 119 mm in inner diameter, 12 mm in depth, and a capacity of 0.13 L. Deionized 

water of 100 mL was poured into the water bath electrode, and the distance between the tip 

of the needle electrode and the water surface was fixed at 4 mm. Nitrogen gas was fed into 

the chamber at a constant flow rate of 5 L·min−1. A pulsed high voltage with a pulse width 

of 500 ns generated by a Blumlein generator, which has two coaxial transmission lines, was 

applied to the needle electrode to generate the pulsed discharge above the water surface. The 

coaxial transmission lines were charged to a negative voltage of 14.14 kV, and a pulse 
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repetition rate was 20 pulses per second. The pH value of the water and the ROS/RNS 

concentrations in the water were measured 4 min after plasma exposure. The pH value and 

temperature of the water and the ROS/RNS concentrations in the water were measured 4 

min after plasma exposure. The pH value and temperature were measured using a pH meter 

(CyberScan PCWP10), and 1.2 mL of water sample, taken from the plasma-exposed water, 

were analyzed using a high-performance liquid chromatograph (HPLC; Shimadzu 

Prominence) equipped with an ion chromatography column (Shodex IC NI-424) in 

combination with an absorbance detector. The wavelength of the absorbance detector was 

fixed at 220 nm. The eluent of the HPLC was a mixed aqueous solution of 3 mM (mmol·L−1) 

acetic acid and 1.9 mM potassium hydroxide, the pH value of the solution was 5.1, and the 

column bath temperature of the HPLC was set to 40°C. 

 

3. Results and discussion 

Figures 1(a), 1(b), and 1(c) show photographs of the pulsed-discharge plasma immediately, 

5 min, and 30 min after plasma exposure, respectively. The discharge reaches the water 

surface, and then splits into several branches. A single thick discharge reaches the rim of the 

water bath electrode immediately after plasma exposure, and several thin discharges that do 

not reach the rim of the water bath electrode spread over the water surface after 5 min of the 

plasma exposure. The extension of the discharge along the water surface tends to decrease; 

the discharge area is about 100 mm in diameter after 5 min of plasma exposure, and about 

60 mm in diameter after 30 min of plasma exposure. Figure 2 shows the variations of water 

temperature as a function of the exposure time. The water temperature shows a tendency to 

increase and then become constant with the plasma exposure. 

Figure 3 shows the chromatogram of the sample after 20 min of plasma exposure. H2O2, 

NO2
-, and NO3

- were detected at the retention time of 1.7, 11.6, and 18.0 min, respectively. 

According to Refs. 11-13, ONOOH and O2NOOH, which are key species in bactericidal 

applications, can be produced in plasma-exposed water; however, the peaks corresponding 

to those species were not detected as shown in Fig. 3. This is due to the lifetime of those 

species. Since the half-life of ONOOH is typically less than 1 s, ONOOH is decomposed to 

long-lived species, such as NO3
-. The lifetime of O2NOOH depends on temperature19) and 

pH20), becoming shorter at higher temperature and higher pH. Nakashima et al.21) reported 

that O2NOOH was detected at a column bath temperature of below 25°C but not at that of 

40°C using an eluent of pH 2 in ion-exchange chromatography, because O2NOOH 

decomposed to nitrous acid and nitrate between the injector and detector. In this work, the 
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column bath temperature and the pH value of eluent were set to 40°C and 5.1, respectively; 

therefore, O2NOOH in water is completely decomposed between the injector and detector, 

and this results in no peak of O2NOOH. Figure 4 shows the concentrations of H2O2, NO2
−, 

and NO3
− in the sampled water and the pH value of the water as functions of the exposure 

time. H2O2 and NO3
− concentrations increase monotonously with the exposure time, while 

NO2
− concentration increases, reaches its peak, and then decreases to zero. This result shows 

a similar tendency, obserbed in the previous work18), and these species were generated by 

dissolving H2O2, HNO2, and HNO3 in water.13,22-29) Therefore, chemical reactions shown in 

Table I are deduced. Since the pH value decreases with the increase of the exposure time, 

the concentration of HNO2, which is in equilibrium with NO2
− (pKa = 3.3)13), increases and 

reacts with H2O2 to form ONOOH. Therefore, NO2
− concentration drops off in the presence 

of H2O2 and the decrease of pH value. Furthermore, ONOOH is an unstable species and 

changes into NO2/OH or NO3
−/H+. OH and NO2 may change into H2O2 and NO2

−/NO3
− via 

the reactions shown by the reactions shown by Eqs. (3) and (4), respectively. 

According to the chemical reactions in water shown in Table I, the concentration 

variations of ROS/RNS in water exposed to pulsed-discharge plasma were calculated by 

using the reaction rates of the reactions. Since H2O2, NO2
-, and NO3

- were generated as 

ROS/RNS in water by the plasma exposure, it was assumed that H2O2, NO2
-, and NO3

- were 

generated in water with the plasma exposure. Accordingly, the reaction rates are represented 

as follows: 

 2 2 2[NO ] ([NO ] [HNO ])f   ,  (5) 

 2 2 2[HNO ] (1 )([NO ] [HNO ])f    , (6) 

 1 2 2 2 2

d[ONOOH]
[H O ][HNO ][H ] [ONOOH]

d

 k k
t

, (7) 

 2
1 2 2 2

d[HNO ]
[H O ][HNO ][H ]

d

 k
t

, (8) 

 
2 2

2 2
H O 1 2 2 2 3

d[H O ]
[H O ][HNO ][H ] [OH]

d

  G k k
t

, (9) 

 2

2
4 2NO

d[NO ]
[NO ]

d




 G k
t

,  (10) 

 3

3
2 4 2NO

d[NO ]
0.76 [ONOOH] [NO ]

d




  G k k
t

, (11) 

 2
2 3

d[OH]
0.24 [ONOOH] 2 [OH]

d
 k k

t
, (12) 
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 22
2 4 2

d[NO ]
0.24 [ONOOH] 2 [NO ]

d
 k k

t
, (13) 

where [X] is the concentration of the species X at time t, f is the ionization degree of HNO2, 

GX is the generation rate of the species X, and k1, k2, k3, and k4 are the rate constants for the 

reactions shown by Eqs. (1), (2), (3), and (4), respectively. The coefficients 0.76 and 0.24 in 

Eqs. (11)-(13) are originated in the branching ratios of the reaction shown by Eq. (2). The 

value of f is determined by pKa for HNO2 and the pH value of the water. The values of the 

rate constants k2, k3, and k4 were reported as 0.13 + 0.87[H+] s−1 in Ref. 5, 4.2×109 M−1·s−1 

in Ref. 31, and 1.0×108 M−1·s−1 in Ref. 32, respectively. The concentrations of H2O2, NO2
−, 

NO3
−, HNO2, ONOOH, OH, and NO2 and the pH value in the water, determined by NO2

− 

and NO3
− concentrations, were calculated by using the above reaction rates, and those were 

fitted to the measured data, as shown in Fig. 2, by varying the rate constant k1 and the 

generation rates of H2O2, NO2
−, and NO3

−. The concentration distribution was assumed to 

be uniform, and the time variation of concentrations during post-discharge period to start 

analyzing the plasma-exposed water and the pH variation in the liquid chromatographic 

analysis were considered. The above equations were calculated by the Runge-Kutta fourth-

order method.  

Figure 5 shows the calculated concentrations of ROS/RNS and pH value, together with 

the measured data as functions of time. The calculated concentrations of H2O2, NO2
−, and 

NO3
− and pH value were in approximate agreement with the measured data below 3000 s, 

when k1 was estimated to be 7.8×103 M−2·s−1 and the generation rates of H2O2, NO2
−, and 

NO3
− were estimated to be 7.70×10−7, 4.10×10−7, and 1.10×10−7 M·s−1, respectively. The 

estimated value of the rate constant k1 is in good agreement with previously reported values, 

8.3(±0.6)×103 M−2·s−1 in Ref. 33, 4.6×103 (± 20%) M−2·s−1 in Ref. 34, and (6.3±1.5)×103 

M−2·s−1 in Ref. 35. The calculated concentrations and pH were overestimated comparing to 

the measured data above 3000 s. This may be due to the change of the generation rate. 

Although the generation rates of H2O2, HNO2, and HNO3 were assumed to be constant in 

the calculation, the generation rates may decrease since the discharge area was contracted 

with time as shown in Fig. 1. The water temperature affects the reaction constant of chemical 

reactions in water, and the temperature change was observed as shown in Fig. 2. The 

calculated concentrations of ROS/RNS were in good agreement with measured data within 

the range where the temperature change was observed; therefore, the ROS/RNS generation 

rates may be significantly affected not by the temperature change but by the contraction of 

the discharge area. 

This work suggests that the simple model considering only four reactions shown in Eqs. 
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(1)-(4) with the assumption of complete mixing in the liquid phase can roughly reproduce 

the measured data, so that it may allow to roughly estimate the generation rates of H2O2, 

NO2
−, and NO3

− and evaluate the generation efficiencies of those species. In order to 

simulate the generation of ROS/RNS in liquid more accurately, it is desirable to consider the 

variations of the generation rate depending on the discharge area and the temperature 

dependence of the rate constants of chemical reactions in water. 

 

4. Conclusions 

The concentrations of ROS/RNS and pH value in pulsed-discharge exposed water were 

remeasured under the unified conditions and calculated using reaction rates based on acid-

base equilibrium and chemical reactions in the water. H2O2, NO2
−, and NO3

− were generated 

as a similar tendency in our previous work. The calculated concentrations of H2O2, NO2
−, 

and NO3
− and pH value in the water exposed to the pulsed-discharge plasma were in 

approximate agreement with the measured data below 3000 s, when the rate constant for 

ONOOH generation was set to 7.8×103 M−2·s−1, which is in good agreement with previously 

reported values. The generation rates of H2O2, NO2
−, and NO3

− were estimated to be 

7.70×10−7, 4.10×10−7, and 1.10×10−7 M·s−1, respectively. 
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Figure Captions 

Fig. 1. (Color online) Photographs of pulsed-discharge plasma: (a) Immediately after plasma 

exposure, (b) After 5 min of plasma exposure, and (c) After 30 min of plasma exposure. 

 

Fig. 2. (Black and white) The variations of water temperature. 

 

Fig. 3. (Color online) Chromatogram of a sample taken after 20 min of plasma exposure. 

 

Fig. 4. (Color online) The variations of concentrations and pH value as functions of exposure 

time: (a) concentrations and (b) pH. 

 

Fig. 5. (Color online) Comparison of calculated and measured concentrations and pH value: 

(a) H2O2, (b) NO2
−, (c) NO3

−, and (d) pH. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 10 of 16AUTHOR SUBMITTED MANUSCRIPT - JJAP-101024.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  Template for JJAP Regular Papers (Feb. 2017) 

11 

 

 

 

 

  

Table I.  ROS/RNS reactions in water. 

 

Reaction Eq. Ref. 

HNO2 + H2O2 + H+ → ONOOH + H2O + H+ (1) 27) 

ONOOH → NO2 + OH (24%) or NO3
− + H+ (76%) (2) 13) 

OH + OH → H2O2 (3) 28) 

2NO2 + H2O → NO2
− + NO3

− + 2H+ (4) 29) 
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(c) 

Fig. 1.  (Color Online) 
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Fig. 2. (Black and white)  
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Fig. 3. (Color Online)  
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 (a) (b) 

Fig. 4. (Color Online) 
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 (a) (b) 

   

 (c) (d) 

Fig. 5. (Color Online) 
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