1,137,527 research outputs found

    Averaging in Cosmology

    Get PDF
    In this paper we discuss the effect of local inhomogeneities on the global expansion of nearly FLRW universes, in a perturbative setting. We derive a generic linearized averaging operation for metric perturbations from basic assumptions, and we explicify the issue of gauge invariance. We derive a gauge invariant expression for the back-reaction of density inhomogeneities on the global expansion of perturbed FLRW spacetimes, in terms of observable quantities, and we calculate the effect quantitatively. Since we do not adopt a comoving gauge, our result incorporates the back-reaction on the metric due to scalar velocity and vorticity perturbations. The results are compared with the results by other authors in this field.Comment: 24 pages, Latex, accepted for publication in Phys. Rev.

    Quantum Model Averaging

    Full text link
    Standard tomographic analyses ignore model uncertainty. It is assumed that a given model generated the data and the task is to estimate the quantum state, or a subset of parameters within that model. Here we apply a model averaging technique to mitigate the risk of overconfident estimates of model parameters in two examples: (1) selecting the rank of the state in tomography and (2) selecting the model for the fidelity decay curve in randomized benchmarking.Comment: For a summary, see http://i.imgur.com/nMJxANo.pn

    On sparsity averaging

    Get PDF
    Recent developments in Carrillo et al. (2012) and Carrillo et al. (2013) introduced a novel regularization method for compressive imaging in the context of compressed sensing with coherent redundant dictionaries. The approach relies on the observation that natural images exhibit strong average sparsity over multiple coherent frames. The associated reconstruction algorithm, based on an analysis prior and a reweighted 1\ell_1 scheme, is dubbed Sparsity Averaging Reweighted Analysis (SARA). We review these advances and extend associated simulations establishing the superiority of SARA to regularization methods based on sparsity in a single frame, for a generic spread spectrum acquisition and for a Fourier acquisition of particular interest in radio astronomy.Comment: 4 pages, 3 figures, Proceedings of 10th International Conference on Sampling Theory and Applications (SampTA), Code available at https://github.com/basp-group/sopt, Full journal letter available at http://arxiv.org/abs/arXiv:1208.233
    corecore