2 research outputs found

    A METHODOLOGY FOR AUTONOMOUS ROOF BOLT INSTALLATION USING INDUSTRIAL ROBOTICS

    Get PDF
    The mining sector is currently in the stage of adopting more automation, and with it, robotics. Autonomous bolting in underground environments remains a hot topic for the mining industry. Roof bolter operators are exposed to hazardous conditions due to their proximity to the unsupported roof, loose bolts, and heavy spinning mass. Prolonged exposure to the risk inevitably leads to accidents and injuries. The current thesis presents the development of a robotic assembly capable of carrying out the entire sequence of roof bolting operations in full and partial autonomous sensor-driven rock bolting operations to achieve a high-impact health and safety intervention for equipment operators. The automation of a complete cycle of drill steel positioning, drilling, bolt orientation and placement, resin placement, and bolt securing is discussed using an anthropomorphic robotic arm.A human-computer interface is developed to enable the interaction of the operators with the machines. Collision detection techniques will have to be implemented to minimize the impact after an unexpected collision has occurred. A robust failure-detection protocol is developed to check the vital parameters of robot operations continuously. This unique approach to automation of small materials handling is described with lessons learned. A user-centered GUI has been developed that allows for a human user to control and monitor the autonomous roof bolter. Preliminary tests have been conducted in a mock mine to evaluate the developed system\u27s performance. In addition, a number of different scenarios simulating typical missions that a roof bolter needs to undertake in an underground coal mine were tested

    Multi-Robot Geometric Task-and-Motion Planning for Collaborative Manipulation Tasks

    Full text link
    We address multi-robot geometric task-and-motion planning (MR-GTAMP) problems in synchronous, monotone setups. The goal of the MR-GTAMP problem is to move objects with multiple robots to goal regions in the presence of other movable objects. We focus on collaborative manipulation tasks where the robots have to adopt intelligent collaboration strategies to be successful and effective, i.e., decide which robot should move which objects to which positions, and perform collaborative actions, such as handovers. To endow robots with these collaboration capabilities, we propose to first collect occlusion and reachability information for each robot by calling motion-planning algorithms. We then propose a method that uses the collected information to build a graph structure which captures the precedence of the manipulations of different objects and supports the implementation of a mixed-integer program to guide the search for highly effective collaborative task-and-motion plans. The search process for collaborative task-and-motion plans is based on a Monte-Carlo Tree Search (MCTS) exploration strategy to achieve exploration-exploitation balance. We evaluate our framework in two challenging MR-GTAMP domains and show that it outperforms two state-of-the-art baselines with respect to the planning time, the resulting plan length and the number of objects moved. We also show that our framework can be applied to underground mining operations where a robotic arm needs to coordinate with an autonomous roof bolter. We demonstrate plan execution in two roof-bolting scenarios both in simulation and on robots.Comment: 25 pages, 12 figures, accepted at Autonomous Robots (AURO). arXiv admin note: substantial text overlap with arXiv:2210.0800
    corecore