63,416 research outputs found

    Re-examining the potential effectiveness of interactive query expansion

    Get PDF
    Much attention has been paid to the relative effectiveness of interactive query expansion versus automatic query expansion. Although interactive query expansion has the potential to be an effective means of improving a search, in this paper we show that, on average, human searchers are less likely than systems to make good expansion decisions. To enable good expansion decisions, searchers must have adequate instructions on how to use interactive query expansion functionalities. We show that simple instructions on using interactive query expansion do not necessarily help searchers make good expansion decisions and discuss difficulties found in making query expansion decisions

    Question-answering, relevance feedback and summarisation : TREC-9 interactive track report

    Get PDF
    In this paper we report on the effectiveness of query-biased summaries for a question-answering task. Our summarisation system presents searchers with short summaries of documents, composed of a series of highly matching sentences extracted from the documents. These summaries are also used as evidence for a query expansion algorithm to test the use of summaries as evidence for interactive and automatic query expansion

    A study on the use of summaries and summary-based query expansion for a question-answering task

    Get PDF
    In this paper we report an initial study on the effectiveness of query-biased summaries for a question answering task. Our summarisation system presents searchers with short summaries of documents. The summaries are composed of a set of sentences that highlight the main points of the document as they relate to the query. These summaries are also used as evidence for a query expansion algorithm to test the use of summaries as evidence for interactive and automatic query expansion. We present the results of a set of experiments to test these two approaches and discuss the relative success of these techniques

    Ranking expansion terms using partial and ostensive evidence

    Get PDF
    In this paper we examine the problem of ranking candidate expansion terms for query expansion. We show, by an extension to the traditional F4 scheme, how partial relevance assessments (how relevant a document is) and ostensive evidence (when a document was assessed relevant) can be incorporated into a term ranking function. We then investigate this new term ranking function in three user experiments, examining the performance of our function for automatic and interactive query expansion. We show that the new function not only suggests terms that are preferred by searchers but suggests terms that can lead to more use of expansion terms

    Query expansion with naive bayes for searching distributed collections

    Get PDF
    The proliferation of online information resources increases the importance of effective and efficient distributed searching. However, the problem of word mismatch seriously hurts the effectiveness of distributed information retrieval. Automatic query expansion has been suggested as a technique for dealing with the fundamental issue of word mismatch. In this paper, we propose a method - query expansion with Naive Bayes to address the problem, discuss its implementation in IISS system, and present experimental results demonstrating its effectiveness. Such technique not only enhances the discriminatory power of typical queries for choosing the right collections but also hence significantly improves retrieval results

    Entity Query Feature Expansion Using Knowledge Base Links

    Get PDF
    Recent advances in automatic entity linking and knowledge base construction have resulted in entity annotations for document and query collections. For example, annotations of entities from large general purpose knowledge bases, such as Freebase and the Google Knowledge Graph. Understanding how to leverage these entity annotations of text to improve ad hoc document retrieval is an open research area. Query expansion is a commonly used technique to improve retrieval effectiveness. Most previous query expansion approaches focus on text, mainly using unigram concepts. In this paper, we propose a new technique, called entity query feature expansion (EQFE) which enriches the query with features from entities and their links to knowledge bases, including structured attributes and text. We experiment using both explicit query entity annotations and latent entities. We evaluate our technique on TREC text collections automatically annotated with knowledge base entity links, including the Google Freebase Annotations (FACC1) data. We find that entity-based feature expansion results in significant improvements in retrieval effectiveness over state-of-the-art text expansion approaches

    Arabic Query Expansion Using WordNet and Association Rules

    Get PDF
    Query expansion is the process of adding additional relevant terms to the original queries to improve the performance of information retrieval systems. However, previous studies showed that automatic query expansion using WordNet do not lead to an improvement in the performance. One of the main challenges of query expansion is the selection of appropriate terms. In this paper, we review this problem using Arabic WordNet and Association Rules within the context of Arabic Language. The results obtained confirmed that with an appropriate selection method, we are able to exploit Arabic WordNet to improve the retrieval performance. Our empirical results on a sub-corpus from the Xinhua collection showed that our automatic selection method has achieved a significant performance improvement in terms of MAP and recall and a better precision with the first top retrieved documents

    Tweetement: Pseudo-relevance Feedback for Twitter Search

    Get PDF
    Microblogging platforms such as Twitter let users communicate with short messages. Due to the messages’ short content and the users’ tendency to type short queries while searching, it is particularly challenging to locate useful tweets that match user queries. The fundamental problems of word mismatch due to ambiguity are especially acute. To solve this problem, this thesis explores and compares multiple automatic query expansion methods that involve the most frequent hashtags and keywords. We built a Web service that provides real-time Twitter Search results incorporating automatic query expansion. Six pseudo-relevance feedback methods were studied and the numbers indicate that results without query expansion perform just as well as results with query expansion. However, the expanded queries find different relevant tweets than the original query, indicating, from multiple methods, that combining the results is a fruitful area for future investigations. Keywords: microblog, Twitter Search, query expansion, pseudo-relevance feedback, Web servic
    corecore