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Abstract

Microblogging platforms such as Twitter let users communicate with short messages.

Due to the messages’ short content and the users’ tendency to type short queries while

searching, it is particularly challenging to locate useful tweets that match user queries.

The fundamental problems of word mismatch due to ambiguity are especially acute.

To solve this problem, this thesis explores and compares multiple automatic query

expansion methods that involve the most frequent hashtags and keywords. We built

a Web service that provides real-time Twitter Search results incorporating automatic

query expansion. Six pseudo-relevance feedback methods were studied and the numbers

indicate that results without query expansion perform just as well as results with

query expansion. However, the expanded queries find different relevant tweets than

the original query, indicating, from multiple methods, that combining the results is a

fruitful area for future investigations.

Keywords: microblog, Twitter Search, query expansion, pseudo-relevance feedback,

Web service
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1 Introduction

1.1 Background

Twitter (https://twitter.com/) is an online social networking and microblogging

service that enables users to send 140-character messages called tweets. With 288

million monthly active users and 500 million tweets sent per day1, Twitter contains a

wealth of information about people, products, companies, sports teams, events, and

other topics. In addition to using the service as a medium to share information, Twitter

is also used to find recent tweets about a particular topic or event. Twitter Search is

a prominent feature of the service, serving 2.1 billion search queries per day. Twitter

Search does a decent job of displaying results for user’s search query; however, it mainly

relies on a keyword-based search that may not contain the most interesting results.

Additionally, the Twitter Search REST API2 tends to work less effectively than the

search feature on Twitter.com. For example, Twitter.com search handles auto-corrects,

has more up-to-date indices, and overall has more indexed tweets. Since the Twitter

Search REST API does not behave exactly like the search feature on Twitter.com,

throughout this paper, the term Twitter Search refers to the Twitter Search REST

API.

1.2 Motivation

Twitter is a platform through which millions of users have live conversations about

various topics in real-time. To give some context, 5,700 tweets are sent per second

on average, with a record of 10,300 tweets per second during the 2014 FIFA World

Cup Final3. Twitter Search performs a keyword-based search that tends to retrieve a

greater number of results and includes tweets that may not be relevant to the intent

of the search. If a user searches for “James” on Twitter, it is unpredictable whether

the user sees results about LeBron James (NBA player), James Franco (actor), James

Rodriguez (soccer player), or other James-related tweets. Although Twitter Search

does a good job of ranking results based on current trends and conversations, we are

interested if the search results through the use of query expansion via pseudo-relevance

feedback are more interesting than the top Twitter Search results.

1About Twitter, Inc. (https://about.twitter.com/company)
2Representational state transfer (REST) application programming interface (API)
3Facebook, Twitter Set Usage Records for World Cup Final (http://on.wsj.com/1mArJUn)
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[GET] https://api.twitter.com/1.1/search/tweets.json

?q=James&result_type=popular&lang=en

@James_Yammouni: #JamesFollowSpree IM DOING A FOLLOW SPREE!

IM GOING TO FOLLOW AS MANY OF YOU UNTILL I CANT ANYMORE!!

@James_Yammouni: It’s my day in Poland today ... Woman’s dayyyyyyyy

@James_Yammouni: FOLLOW SPREE IN 10 MINUTES! #FOLLOWjames

@James_Yammouni: Hold you tight straight through the daylight,

I’m right here when you gonna realise ... that I’m your cure...

@James_Yammouni: Just woke up and my hearts racing and I’m out of

breath I think I was having a nightmare

Figure 1.1: Top 5 Twitter Search results for James.

1.3 Goals

Due to increasing trends like form autocompletions, we believe users do not always

type complete queries. Although it is nearly impossible to show the user exactly what

he or she finds interesting, we are interested if we can improve the search experience

on Twitter. We would like to take the results retrieved by the original Twitter Search

query submitted via its REST API4, text mine these results, do query expansion with

new terms, and display the most interesting conversations that are happening now.

This thesis consists of two parts: 1) building a Web service on top of Twitter Search that

serves search queries; 2) exploring and comparing multiple query expansion techniques

to find which, if any, lead to users rating the results as more interesting. Furthermore,

the reader should note that the outcomes of these experiments largely depend on the

current implementation of the Twitter Search API.

1.4 Overview

The Web service built for this project can be found at: http://tweetement.com (or

http://tweetement0.appspot.com). The website handles user input, places the query

in a background job, and displays the final results. The technology stack consists

of: AngularJS JavaScript framework, Bootstrap front-end framework, Google Cloud

Platform, and the Twitter API. More technical details are discussed in Chapter 3.

4GET search/tweets (https://dev.twitter.com/rest/reference/get/search/tweets)
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Figure 1.2: Tweetement main screen.

Query Expansion

Query expansion is the process of adding additional terms to the existing search query

to generate an expanded search query, with the objective of retrieving more relevant and

interesting search results. For example, the query term “NCAA” might be expanded

to “NCAA Football” or “NCAA March Madness”, and one is more appropriate than

the other depending on the time of the year or current trends. A well-formed query

expansion technique helps the end user formulate better search queries that lead to

better search results. Therefore, it is important to pick the right expansion terms.

Pseudo-relevance feedback is a general technique used for automatic query expan-

sion. The idea is to assume some top-N results are accurate or relevant to the initial

query and pick expansion terms from these results. This process is called automatic

because of the implicit user interaction. Pseudo-relevance feedback generally leads to

improved retrieval in search engines. However, pseudo-relevance feedback has obvious

drawbacks such as query drift. Query drift happens when the focus of the search topic

shifts to an unintended topic caused by improper expansion[8]. Chapter 2 talks more

about query expansion.

3



In this paper, we explore whether or not query expansion via pseudo-relevance

feedback produces more interesting search results than Twitter Search. Six query

expansion methods were explored and their results were shown to the user in random

order. The user then rated each result (tweet) as either Interesting, Neutral, or Not

Interesting. Chapter 3 discusses these methods in detail. Chapter 4 discusses the

performance outcomes of the methods.

Figure 1.3: Search results page with expanded queries.
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2 Related Work

With the increasing amount of information on the Internet, the number of search

queries performed on various Web search engines continues to grow. These queries are

generally very short; therefore, straightforward keyword matching across documents

may not always yield relevant results. Word mismatch refers to the issue in which

users often use different words to describe concepts in their queries than authors use to

describe the same concepts in their documents[1]. The primary problems in ambiguity

stem from hyponymy (one word has multiple meanings) and synonymy (multiple words

have the same meaning). A number of techniques for dealing with word mismatch have

long been studied.

A popular approach for dealing with word mismatch is query expansion. The goal of

query expansion is to expand the original query with other words that best capture the

user’s intent, or that produce a more useful query that is more likely to retrieve more

relevant documents[2]. The technique is particularly effective when the user query is

vague, short, or lacks useful keywords pertaining the intended topic. This process can

be manual via explicit relevance feedback, or automatic via pseudo-relevance feedback.

Relevance feedback is a technique designed to improve search results based on the

user’s feedback. Relevance feedback is an iterative process where the user assesses

the relevance of documents returned in response to an initial, ‘tentative’ query[3].

The user goes through the initial query results and marks whether each document is

relevant or not. Based on the user’s feedback, a new query is submitted with the initial

query, expanded with terms taken from the results marked as relevant. This procedure,

known as explicit feedback, is repeated until the user is satisfied with the results.

Relevance feedback can be effective; however, the technique puts a huge burden on

the user. Pseudo-relevance feedback (also known as implicit feedback, local feedback,

blind feedback, or adhoc) is a technique designed to effectively guess what the user

might find interesting without having the user explicitly mark the search results. In

pseudo-relevance feedback, the top results are assumed to have a higher precision and

that keywords in those results are assumed to represent the intended search topic. It

has proven to be an effective technique in numerous studies and experiments[1].

The concept of microblogging is fairly new and many traditional information re-

trieval techniques do not apply as nicely. It is observed that people search Twitter

to find temporarily relevant information (e.g current events) and information related

to people. Additionally, it appears people repeat Twitter queries to monitor the as-

5



sociated search results over time, while they change and develop Web engine queries

to learn about a topic[4]. Researchers have been exploring various automatic query

expansion techniques on Twitter and other microblogging sites.

Lau, Li, and Tjondronegoro performed an experiment using the TREC ’11 dataset

in which they proposed term-based and pattern-based features with distributed weights

to retrieve information from Twitter. The flow is to (1) use q retrieve first 100 relevant

tweets, (2) sort them based on time, R, (3) form training set using R, (4) form expanded

queries, Q, using terms from R, (5) use Q to retrieve 1000 tweets and sort based on

time, and (6) display top 30 tweets. For term-based feature, they used a standard

TF-IDF weighting scheme. For topical or pattern based feature, they adopted the

Frequent Pattern Mining approach to find the closed pattern. The baseline run using

terms frequency feedback without weighting outperformed runs with weighted terms

and patterns. It is unclear how the baseline run would compare to a run without

feedback[5].

Efron performed a similar experiment in which the author found that the baseline

run with terms frequency feedback was slightly more effective than the baseline run

without feedback. Additionally, the author proposed a method of pseudo-relevance

feedback based on hashtags. Using data over a 24-hour period using Twitter’s Stream-

ing API and 29 topic queries, the author found that retrieval using query expansion

with hashtags gave a marginal improvement over the two baseline runs[6].

Bandyopadhyay, Mitra, and Majumder took a slightly different approach for Twit-

ter search query expansion. In their experiment, the authors managed to improve

retrieval effectiveness by using external corpora as a source for query expansion terms.

Specifically, the authors used the now deprecated Google Search API to retrieve page

titles from Google Search and used those to expand queries. The five most frequent

word-level n-grams (n = 1, 2, 3) were added to the original query. One of the runs, R3,

contained the results that were retrieved using the Google Search API with title words

(n = 1) sorted in descending order by their frequencies. The most frequent five words

were used to perform a new retrieval. Interestingly, the new query did not include

the original query – this process is known as query reformulation, as opposed to query

expansion. This technique resulted in significant improvements over the baseline run

for the top fifty results per query[7].

Current published papers we have discovered all used a TREC dataset or some other

pre-fetched dataset to perform queries on. However, we performed our experiment with

actual Twitter users and real-time Twitter Search results which may be less subject to

data generalization.
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3 Approach

We built the Web service Tweetement for this project. This chapter describes the

architecture of Tweetement, data retrieval process from Twitter Search API, the six

query expansion methods that were explored, and the way we measured performance.

Source code of the project is open-source and is hosted on GitHub at the following

URL:

https://github.com/Bekt/tweetement

3.1 Web Service

Tweetement is a Web service that handles user input, performs query expansion via

pseudo-relevance feedback, and displays the results of the six methods in random order

where the user can provide feedback for each result (tweet). The service was built in

a way such that it is easily scalable and maintainable. The following is the flow of the

application:

1. User submits a search query.

2. The query is put in a queue to process.

3. The query is popped from the queue, automatic query expansion is performed,

and the results are stored in the datastore.

4. User views the search results and optionally provides feedback for each result.

Figure 3.1: Tweetement architecture.
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The front-end of the website was built in a Single Page Application (SPA) fashion

to provide fluid user experience. In order to accomplish SPA, open-source Bootstrap

and AngularJS frameworks were used. Bootstrap is a popular open-source front-end

framework that focuses on responsive design so that the layout of the website adjusts

per user’s device – mobile or desktop. AngularJS is a popular open-source JavaScript

framework that makes building SPAs easy by providing a MVC-like architecture on

the client-side. Twitter’s widget-js JavaScript library was used to embed tweets into

the search results page.

The website was hosted on Google App Engine and used features such as the Task

Queue API and the NDB Datastore API. App Engine makes it simple to build, deploy,

and maintain scalable applications on Google’s own infrastructure. Since each of the

six techniques could make multiple network calls to the Twitter Search API, it was

best to put the queries in a background queue instead of making the client’s request

wait for a long period of time. The Task Queue API was used to schedule background

jobs when the user submitted a query. The Query Expander then picked up the job to

perform query expansion. All data were stored in schemaless object datastore, NDB,

which comes with convenient features such as automatic caching. The back-end of the

application was written in Python.

User authentication was handled via Twitter OAuth for two reasons. First, we

did not want to roll out our own user authentication over unencrypted connections.

Second, we followed Twitter’s recommended practice to communicate properly with

the Twitter API. Without Twitter authentication, the application had a rate limit of

450 API requests per 15 minutes for all users; whereas with Twitter Authentication,

the rate-limit was extended to 180 API requests per user every 15 minutes. webapp2

sessions and simpleauth libraries were used to implement user authentication. The

author found a major bug in simpleauth while working on Tweetement and submitted

a patch accordingly.

On the search results page, the user was shown the top-5 results from the original

search query plus the top-5 results from each of the query expansion methods. Thus,

the total number of unique tweets for the search query could be up to 35. All tweets

were shown in random order. The application provided a feedback system where the

user could rate each search result as Interesting, Neutral, or Not Interesting. The user

could change his/her rating at any time.

The application provided REST APIs for the first-party client and other third-

parties to interact with. The following methods were implemented. All methods ac-

cepted and returned JavaScript Object Notation (JSON) objects.

8



[POST] /api/enqueue

Submit a search query.

Parameters:

(string) query: search query

(string) email: email to notify when the request completes (optional)

Returns:

(int) qid: enqueued query ID

[GET] /api/result

Retrieve results for a particular query.

Parameters:

(int) qid: query ID

Returns:

(int) qid: query ID

(string) query: original query

(string) status: qtatus of the job. Working | Cancelled | Done

(date) created: created datetime of the job

(date) updated: updated datetime of the job

(list) hashtags: top-10 hashtags used for query expansion

(list) keywords: top-10 keywords used for query expansion

(list) status_ids: tweet IDs of the expanded search result

[POST] /api/feedback

Provide feedback for a particular result.

Parameters:

(int) qid: query ID

(int) sid: tweet ID

(int) score: user’s rating (0, 1, or 2)

Returns:

None

[GET] /api/scores

Retrieve feedback submitted by the current user for

results of a particular query.

Parameters:

(int) qid: query ID

Returns:

(list) items:

(int) qid: query ID

(int) uid: user ID

(int) sid: tweet ID

(int) score: user’s rating (0, 1, or 2)

Figure 3.2: Publicly available API methods.
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3.2 Data Retrieval

Since Tweetement was built on top of the Twitter Search API, it is important to note

that our experimental results are heavily dependent on the quality of the responses

received from the Twitter Search API. Furthermore:

[The Twitter Search API] allows queries against the indices of recent or

popular tweets and behaves similarly to, but not exactly like the Search

feature available in Twitter mobile or web clients, such as Twitter.com

search.

... it’s important to know that the Search API is focused on relevance and

not completeness. This means that some tweets and users may be missing

from search results.1

Furthermore, we observed that Twitter Search API behaved unpredictably at times.

For example:

• Ranking of the results were not consistent. That is, if two exact same queries

were submitted simultaneously, the returned tweets were not always the same or

have the same ranking. This affects two things:

(a) The top-5 results shown to the user, affecting the average precision calcula-

tions. Two sets of five identical tweets could have different average precision

scores because of ordering.

(b) Since the results were not always the same, this could affect the order of the

most occurred hashtags and keywords.

• When requesting popular tweets only, regardless of the value of the count pa-

rameter in the API request, sometimes there were only up to 10 results in the

response, even for trending topics.

The Query Expander connected to the Twitter Search API by first requesting pop-

ular result types for a query. If there were not enough results, the Query Expander

filled up the remaining spots with mixed result types for the query. The difference is

that popular returns only the most popular results in the response, whereas mixed

returns both popular and real-time results in the response. As a result, the results

we showed to the users were sorted by popularity in a way. Note that we limited the

search results to English tweets only by providing the lang=‘en’ parameter.

1The Search API (https://dev.twitter.com/rest/public/search)

10
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3.3 Query Expansion

We were interested to see if we could provide improved search results by performing

automatic query expansion via pseudo-relevance feedback. That is, we started off by

first retrieving 200 search results for the user’s original query, q, from the Twitter Search

API. Let’s denote this initial results set, R, and assume these results are somewhat

relevant. The question now is how to expand the user’s query. We explored a few ways

to automatically generate additional query terms by analyzing the results in R.

The users of Twitter categorize their messages or put more emphasis on a certain

topic by using hashtags in their tweets. Hashtags are a big part of the Twitter culture

that help users have conversations about a common topic across the world.

The ten most frequently occurring hashtags, h, and keywords, k, were extracted

from R. Only unique tokens in each tweet and non-stop words were taken into con-

sideration for this process. Tokens were lowercased and any punctuation was removed.

The original query tokens were also excluded from h and k.

Around 900 Twitter-specific stop words were generated based on a 1.5 million tweets

dataset.2 During query expansion, tokens that appear in this list are ignored. The orig-

inal query, however, could still contain such tokens. The complete list is available under

the file stoplist.txt and the script that was used to generate the list is accessible

under the file scripts/twitter stopwords.py.

The user was shown the list of tweets that were retrieved by expanded search queries

in random order. The top-5 results for the original query were also included to compare

the baseline method.

We studied six different ways to generate additional query terms. To compare the

performances of these methods, we denoted method 0 as the baseline method where

the search query was performed with the original query. Methods 1-5 were two-pass

techniques and method 6 was a three-pass technique. We expected method 1, method

2, or method 6 to perform the best. No kind of ranking arrangement was done for

methods 1-5.

Method 1: Top hashtag

New query: q + h[0]

A new search query was performed with the original query concatenated with the

2Twitter Sentiment Analysis Training Corpus
(http://thinknook.com/twitter-sentiment-analysis-training-corpus-dataset-2012-09-22/)
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most occurring hashtag. The resulting tweets all included the tokens q and/or h[0] in

the body of the tweet. The first five results were shown to the user.

Method 2: Top keyword

New query: q + k[0]

A new search query was performed with the original query concatenated with the

most occurring keyword. The resulting tweets all included the tokens q and/or k[0] in

the body of the tweet. The first five results were shown to the user.

Method 3: Top hashtag + top keyword

New query: q + h[0] + k[0]

A new search query was performed with the original query concatenated with the

most occurring hashtag and keyword. The resulting tweets all included the tokens q,

h[0], and/or k[0] in the body of the tweet. The first five results were shown to the user.

Method 4: Top two hashtags

New query: q + h[0] + h[1]

A new search query was performed with the original query concatenated with the

two most occurring hashtags. The resulting tweets all included the tokens q, h[0],

and/or h[1] in the body of the tweet. The first five results were shown to the user.

Method 5: Top two keywords

New query: q + k[0] + k[1]

A new search query was performed with the original query concatenated with the

two most occurring keywords. The resulting tweets all included the tokens q, h[0],

and/or h[1] in the body of the tweet. The first five results were shown to the user.

Method 6: Most top-10 hashtags and keywords occurrences

New query: q + h[0] OR q + k[0]

A new search query was performed with the above string. The special OR operand

is a boolean operand that Twitter Search recognizes. In a way, we combined methods

1 and 2.

12



The top 200 results were retrieved with the expanded query. From there, each tweet

was given a score. A tweet had a higher score if it contained hashtags or keywords that

occurred in h or k. The five results with the highest scores were shown to the user.

scores = dict()

for tweet in results:

for token in unique_tokens(tweet.message):

if token in h or token in k :

scores[tweet.id] += 1

Figure 3.3: Scoring results by maximal hashtag and keyword occurrences.

3.4 Performance Measure

Average Precision (AP) is a popular and standard evaluation metric in the information

retrieval field that takes rank order into consideration. As a result, average precision

is sensitive to the order of the results. When working with small number of results

(as we are in this thesis), changes to the ranking of search results may have significant

impact on the average precision calculation.

AP =
1

N

N∑
k=1

P (k)× rel(k)

N : number of results shown to the user

rel(k) : indicates whether result k is relevant or not (1 or 0)

P (k) : precision of result k.

P (k) =
|relevant results up until k|

k

The average precision equation was slightly modified so that it took into account

the user’s feedback: (0) Not Interesting, (1) Neutral, and (2) Interesting. Since each

result contained at least the original query, we assumed every result is relevant. We

refer to this as average weighted precision.

13



AP ′ =
1

N

N∑
k=1

P ′(k)

P ′(k) =
sum of feedback scores up until result k

k ×max weight

max weight = 2 (Interesting)

Mean average precision is used to compute the mean of average precision scores for

a set of queries.

MAP =
1

Q

Q∑
q=1

AP (q)

Similarly, mean average weighted precision is used to compute the mean of average

weighted precision scores for a set of queries.

MAP ′ =
1

Q

Q∑
q=1

AP ′(q)
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4 Evaluation

Over 30 people participated as volunteers and provided feedback for their search queries

results. Most of the participants were students at the CSCE Department at the Uni-

versity of Arkansas or members of the HH Data Hackers Facebook group1. The age

demographic was early 20’s. In this chapter, we analyze the responses from these

volunteers and discuss some of the observations.

It should be noted that the computations are volatile due to the small sample size,

selection bias, the subjectivity of users’ feedback, and the quality of the responses from

the Twitter Search API.

4.1 Data Selection

There were a total of 116 queries performed by 32 users. However, not all queries were

suitable for meaningful analysis. The 116 queries were filtered down into 25 queries

with the following criteria:

1. At least 5 hashtags and 5 keywords in the initial results set. (106 queries)

This filtered out queries that did not have enough initial results. For example,

the query Kanat Bekt only returned one result.

2. Each of the query expansion methods had at least 5 results. (42 queries)

This filtered out queries that did not have enough results for one or more query

expansion methods. Unfortunately, this filtered out some good queries such as

those that had more than 5 results for all methods except one or two. Although it

would have been helpful to include some of these queries, we did not include them

in our analysis as this would have introduced more variables in our computations.

3. Each query had 100% feedback from the user. (28 queries)

This filtered out queries that did not have user feedback for all of their results.

The reason for this is that we did not want to “guess” the scores of the results

the user left unrated. This reduced ambiguity and allowed us to achieve more

objective results.

4. Maximum of three queries per user. (25 queries)

Although the user did not know which results belonged to which methods, this

filter reduced bias that the user might have had towards a particular method.

1https://www.facebook.com/groups/datahackers/
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q M0 M1 M2 M3 M4 M5

0 Seahawks Seahawks

#seahawks

Seahawks

seattle

Seahawks #seahawks

seattle

Seahawks #seahawks

#nflcombine

Seahawks seattle

marshawn

1 net

neutrality

net neutrality

#nonetneutral-

ity

net neutrality

fcc

net neutrality

#nonetneutrality fcc

net neutrality

#nonetneutrality

#netneutrality

net neutrality fcc

fccs

2 macbook macbook

#applewatch

macbook apple macbook

#applewatch apple

macbook #applewatch

#applelive

macbook apple event

3 apple

watch

apple watch

#apple

apple watch

economist

apple watch #apple

economist

apple watch #apple

#applewatch

apple watch

economist iphone

4 Yeezy 750

boost

Yeezy 750 boost

#adidas

Yeezy 750 boost

adidas

Yeezy 750 boost

#adidas adidas

Yeezy 750 boost

#adidas #kanyewest

Yeezy 750 boost

adidas size

5 LCS LCS #lcs LCS elements LCS #lcs elements LCS #lcs #lcsbigplays LCS elements

lolesports

6 ferguson ferguson

#ferguson

ferguson police ferguson #ferguson

police

ferguson #ferguson

#darrenwilson

ferguson police

justice

7 boston

bombing

boston bombing

#news

boston bombing

marathon

boston bombing

#news marathon

boston bombing #news

#bostonmarathon

boston bombing

marathon trial

8 house of

cards

house of cards

#houseofcards

house of cards

houseofcards

house of cards

#houseofcards

houseofcards

house of cards

#houseofcards #hoc

house of cards

houseofcards netflix

9 samsung samsung

#business

samsung galaxy samsung #business

galaxy

samsung #business

#cbc

samsung galaxy

samsungs

10 Cardinals

Baseball

Cardinals

Baseball

#stlcards

Cardinals

Baseball

stlcards

Cardinals Baseball

#stlcards stlcards

Cardinals Baseball

#stlcards #baseball

Cardinals Baseball

stlcards spring

11 amazon

gift cards

amazon gift

cards #amazon

amazon gift

cards itunes

amazon gift cards

#amazon itunes

amazon gift cards

#amazon #itunes

amazon gift cards

itunes xbox

12 swagbucks swagbucks

#swagbucks

swagbucks swag swagbucks

#swagbucks swag

swagbucks #swagbucks

#swagcode

swagbucks swag

bucks

13 Roald

Dahl

Roald Dahl

#worldbookday

Roald Dahl

worldbookday

Roald Dahl

#worldbookday

worldbookday

Roald Dahl

#worldbookday

#roalddahl

Roald Dahl

worldbookday

roalddahl

14 iphone iphone

#spideyonpix

iphone apple iphone #spideyonpix

apple

iphone #spideyonpix

#iphone

iphone apple

spideyonpix

15 Dallas

Cowboys

Dallas Cowboys

#cowboys

Dallas Cowboys

nfl

Dallas Cowboys

#cowboys nfl

Dallas Cowboys

#cowboys #nfl

Dallas Cowboys nfl

dez

16 snow-

storm

snowstorm

#snowstorm

snowstorm skids snowstorm

#snowstorm skids

snowstorm #snowstorm

#snow

snowstorm skids

snow

17 icc cwc icc cwc #cwc15 icc cwc cwc15 icc cwc #cwc15 cwc15 icc cwc #cwc15

#pakvuae

icc cwc cwc15

pakvuae

18 ac milan ac milan #milan ac milan

liverpool

ac milan #milan

liverpool

ac milan #milan #deals ac milan liverpool el

19 peyton

manning

peyton manning

#broncos

peyton manning

broncos

peyton manning

#broncos broncos

peyton manning

#broncos

#peytonmanning

peyton manning

broncos nfl

20 Marijuana Marijuana

#marijuana

Marijuana legal Marijuana

#marijuana legal

Marijuana #marijuana

#cannabis

Marijuana legal dc

21 net

neutrality

net neutrality

#netneutrality

net neutrality

fcc

net neutrality

#netneutrality fcc

net neutrality

#netneutrality

#internet

net neutrality fcc

netneutrality

22 samsung samsung

#galaxys6edge

samsung galaxy samsung

#galaxys6edge galaxy

samsung #galaxys6edge

#galaxys6

samsung galaxy s6

23 lean engi-

neering

lean engineering

#jobs

lean engineering

manufacturing

lean engineering

#jobs manufacturing

lean engineering #jobs

#engineering

lean engineering

manufacturing

manager

24 Arkansas

Basketball

Arkansas

Basketball

#arkansas

Arkansas

Basketball

kentucky

Arkansas Basketball

#arkansas kentucky

Arkansas Basketball

#arkansas #basketball

Arkansas Basketball

kentucky sec

Figure 4.1: All qualifying queries. Method 6 is not included because it is just M1

concatenated with M2 with an OR operand.
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4.2 Results & Discussion

The average weighted precision (AP ′@5) scores were calculated for each method of

each query.

q M0 M1 M2 M3 M4 M5 M6

0 1.000 1.000 1.000 0.565 0.980 1.000 1.000

1 1.000 0.693 1.000 1.000 0.980 1.000 0.980

2 1.000 0.500 1.000 0.500 0.327 0.743 1.000

3 0.743 0.375 1.000 1.000 0.643 1.000 1.000

4 0.837 0.268 0.837 0.268 0.000 0.447 0.000

5 1.000 1.000 1.000 1.000 0.872 1.000 1.000

6 0.663 0.157 0.613 0.157 0.000 0.575 0.447

7 0.000 0.085 0.000 0.157 0.000 0.000 0.000

8 0.040 0.128 0.257 0.128 0.613 0.000 0.663

9 0.693 0.293 0.693 0.293 0.293 1.000 1.000

10 0.843 0.653 0.653 0.653 1.000 1.000 1.000

11 0.782 0.543 1.000 1.000 1.000 1.000 1.000

12 1.000 1.000 1.000 1.000 1.000 1.000 0.128

13 0.318 0.628 0.628 0.628 0.698 0.698 0.693

14 0.872 0.420 0.543 0.227 0.803 0.227 0.515

15 1.000 1.000 1.000 0.857 0.857 0.922 1.000

16 0.980 0.852 1.000 1.000 0.922 0.543 1.000

17 0.728 0.857 0.807 0.857 0.520 0.520 0.500

18 0.960 0.663 0.752 0.535 0.605 0.935 0.520

19 1.000 1.000 1.000 1.000 0.387 1.000 1.000

20 1.000 0.793 1.000 1.000 0.852 0.565 0.922

21 0.922 0.955 0.832 1.000 0.733 1.000 0.603

22 0.623 0.662 0.513 0.563 0.615 0.585 0.453

23 1.000 1.000 1.000 0.955 0.980 1.000 1.000

24 0.872 0.578 0.872 0.578 0.500 0.578 0.877

MAP′ 0.795 0.644 0.800 0.677 0.647 0.734 0.732

Figure 4.2: Average weighted precision scores for the 25 queries from section 4.1.

Figure 4.2 suggests that mean weighted average precision scores for method 0 (base-

line) and method 2 were relatively high. We can safely conclude that, in general, users

find the top-5 results returned from Twitter Search interesting. Method 2, which adds

the top keyword as an additional query term, also tends retrieve mostly interesting

top-5 results. Since the MAP ′ was already so high for the baseline method, it is

challenging to achieve a score that is significantly higher than that.
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Method 0 yielded 100% AP ′ for 9 out of 25 queries. For methods 5 and 6, it was

11 out of 25 queries, while for method 2, the number was 12 out 25 queries. However,

method 0 had only 3 queries for which the average weighted precision was less than

or equal to 60%. For methods 5 and 6, it was 10 and 8 queries, respectively, while for

method 2, the number was 4 queries.

A few factors affect the average weighted precision scores such as the rank of each

result and the score the user gave for the result. Since we compared our results against

the baseline method, we looked into how method 0 results overlap with the results

methods 1-6.

M0 M1 M2 M3 M4 M5 M6
Mean 1.000 0.792 0.560 0.864 0.936 0.824 0.888

Figure 4.3: Percentage of new results compared to method 0 results.

Figure 4.3 suggests method 2 overall has 56.0% new results compared to method

0, while method 4 has 93.6% new results. This might explain why method 2’s MAP ′

was so high and similar to the MAP ′ of method 0. Method 4 discovered the most new

content the user might not have otherwise discovered. However, the MAP ′ score of

method 4 was relatively low.

Since the average weighted precision score takes rank orders into consideration,

the non-overlapping results might have suffered from the orderings of the overlapping

results. Therefore, the MAP ′ scores for only non-overlapping results were calculated

for methods 1-6. The MAP ′ score of method 0 is the same as in Figure 4.2.

M0 M1 M2 M3 M4 M5 M6
MAP′ 0.795 0.666 0.805 0.680 0.647 0.748 0.721

Figure 4.4: Mean average weighted precision scores for non-overlapping results only.

Interestingly, the MAP ′ scores for all the methods except for methods 4 and 6

improved when overlapping results (with method 0) were removed. Method 2, which

had MAP ′ of 80.0% with 56.0% new results, outperformed the baseline method when

the overlapping results were excluded, bumping the MAP ′ score to 80.5% with 100.0%

new results. This suggests that method 2 discovered interesting results the user might

not have otherwise discovered using Twitter Search. There were no interesting patterns

in the queries for us to categorize them into meaningful groups. There were no evident

factors that explain the increase or decrease in average precision scores, with or without

the non-overlapping results.
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5 Conclusion

Automatic query expansion has proved to perform well in modern Web search engines.

We explored a few options on how to apply the same concept on a microblogging

environment. This thesis focused on building a Web service that provides an improved

search experience for the microblogging platform Twitter. The experiment shows that

performance measure without automatic query expansion is as good as performance

measure with automatic query expansion for a small number of results.

We found out that retrieval efficiency was high for both expanded queries and non-

expanded queries. The pseudo-relevance feedback method which expanded the original

query with the most occurring keyword slightly outperformed the baseline method

(non-expanded query).

We have also confirmed that the same method had the least percentage of original-

ity compared to the baseline method. The pseudo-relevance feedback method which

expanded the original query with the two most occurring hashtags yielded the highest

percentage of originality compared to the baseline method. Additionally, excluding

those results that appeared in the baseline method results slightly improved retrieval

efficiency for 4 out of the 6 automatic query expansion methods.

Since removing the overlapping results caused slight improvement in retrieval effec-

tiveness, future work could be to design a novel pseudo-relevance feedback that would

exclude results that appear in the baseline method’s results. Furthermore, combining

the results of the six methods could lead to improved retrieval results. In that case,

the results that appear in multiple methods would have a higher rank.
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