86,145 research outputs found

    Gap Symmetry and Thermal Conductivity in Nodal Superconductors

    Full text link
    Here we consider the universal heat conduction and the angular dependent thermal conductivity in the vortex state for a few nodal superconductors. We present the thermal conductivity as a function of impurity concentration and the angular dependent thermal conductivity in a few nodal superconductors. This provides further insight in the gap symmetry of superconductivity in Sr2_2RuO4_4 and UPd2_2Al3_3.Comment: 2 pages, proceedings of SCES '0

    Gap Symmetry an Thermal Conductivity in Nodal Superconductors

    Full text link
    There are now many nodal superconductors in heavy fermion (HF) systems, charge conjugated organic metals, high Tc cuprates and ruthenates. On the other hand only few of them have a well established gap function. We present here a study of the angular dependent thermal conductivity in the vortex state of some of the nodal superconductors. We hope it will help to identify the nodal directions in the gap function of UPd_2Al_3, UNi_2Al_3, UBe_13 and URu_2Si_2.Comment: 4 pages, 5 figure

    Master\u27s Recital

    Full text link
    List of performers and performances

    Nonlinear response and scaling law in the vortex state of d-wave superconductors

    Full text link
    We study the field dependence of the quasi-particle density of states, the thermodynamics and the transport properties in the vortex state of d-wave superconductors when a magnetic field is applied perpendicular to the conducting plane, specially for the low field and the low temperature compared to the upper critical field and transition temperature, respectively, H/Hc2≪1H/H_{c2} \ll 1 and T/Tc≪1T/T_c \ll 1. Both the superfluid density and the spin susceptibility exhibit the characteristic H\sqrt{H}-field dependence, while the nuclear spin lattice relaxation rate T1−1_1^{-1} and the thermal conductivity are linear in field HH. With increasing temperature, these quantities exhibit the scaling behavior in T/HT/\sqrt{H}. The present theory applies to 2D ff-wave superconductor as well; a possible candidate of the superconductivity in Sr2_2RuO4_4.Comment: 11 pages, 4 figure
    • …
    corecore