41 research outputs found

    Diverse antidepressants increase CDP-diacylglycerol production and phosphatidylinositide resynthesis in depression-relevant regions of the rat brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Major depression is a serious mood disorder affecting millions of adults and children worldwide. While the etiopathology of depression remains obscure, antidepressant medications increase synaptic levels of monoamine neurotransmitters in brain regions associated with the disease. Monoamine transmitters activate multiple signaling cascades some of which have been investigated as potential mediators of depression or antidepressant drug action. However, the diacylglycerol arm of phosphoinositide signaling cascades has not been systematically investigated, even though downstream targets of this cascade have been implicated in depression. With the ultimate goal of uncovering the primary postsynaptic actions that may initiate cellular antidepressive signaling, we have examined the antidepressant-induced production of CDP-diacylglycerol which is both a product of diacylglycerol phosphorylation and a precursor for the synthesis of physiologically critical glycerophospholipids such as the phosphatidylinositides. For this, drug effects on [<sup>3</sup>H]cytidine-labeled CDP-diacylglycerol and [<sup>3</sup>H]inositol-labeled phosphatidylinositides were measured in response to the tricyclics desipramine and imipramine, the selective serotonin reuptake inhibitors fluoxetine and paroxetine, the atypical antidepressants maprotiline and nomifensine, and several monoamine oxidase inhibitors.</p> <p>Results</p> <p>Multiple compounds from each antidepressant category significantly stimulated [<sup>3</sup>H]CDP-diacylglycerol accumulation in cerebrocortical, hippocampal, and striatal tissues, and also enhanced the resynthesis of inositol phospholipids. Conversely, various antipsychotics, anxiolytics, and non-antidepressant psychotropic agents failed to significantly induce CDP-diacylglycerol or phosphoinositide synthesis. Drug-induced CDP-diacylglycerol accumulation was independent of lithium and only partially dependent on phosphoinositide hydrolysis, thus indicating that antidepressants can mobilize CDP-diacylglycerol from additional pools lying outside of the inositol cycle. Further, unlike direct serotonergic, muscarinic, or α-adrenergic agonists that elicited comparable or lower effects on CDP-diacylglycerol versus inositol phosphates, the antidepressants dose-dependently induced significantly greater accumulations of CDP-diacylglycerol.</p> <p>Conclusion</p> <p>Chemically divergent antidepressant agents commonly and significantly enhanced the accumulation of CDP-diacylglycerol. The latter is not only a derived product of phosphoinositide hydrolysis but is also a crucial intermediate in the biosynthesis of several signaling substrates. Hence, altered CDP-diacylglycerol signaling might be implicated in the pathophysiology of depression or the mechanism of action of diverse antidepressant medications.</p

    Building capacity for public and population health research in Africa : the consortium for advanced research training in Africa (CARTA) model

    Get PDF
    Background: Globally, sub-Saharan Africa bears the greatest burden of disease. Strengthened research capacity to understand the social determinants of health among different African populations is key to addressing the drivers of poor health and developing interventions to improve health outcomes and health systems in the region. Yet, the continent clearly lacks centers of research excellence that can generate a strong evidence base to address the region’s socio-economic and health problems. Objective and program overview: We describe the recently launched Consortium for Advanced Research Training in Africa (CARTA), which brings together a network of nine academic and four research institutions from West, East, Central, and Southern Africa, and select northern universities and training institutes. CARTA’s program of activities comprises two primary, interrelated, and mutually reinforcing objectives: to strengthen research infrastructure and capacity at African universities; and to support doctoral training through the creation of a collaborative doctoral training program in population and public health. The ultimate goal of CARTA is to build local research capacity to understand the determinants of population health and effectively intervene to improve health outcomes and health systems. Conclusions: CARTA’s focus on the local production of networked and high-skilled researchers committed to working in sub-Saharan Africa, and on the concomitant increase in local research and training capacity of African universities and research institutes addresses the inability of existing programs to create a critical mass of well-trained and networked researchers across the continent. The initiative’s goal of strengthening human resources and university-wide systems critical to the success and sustainability of research productivity in public and population health will rejuvenate institutional teaching, research, and administrative systems

    Maternal cocaine administration in mice alters DNA methylation and gene expression in hippocampal neurons of neonatal and prepubertal offspring

    Get PDF
    Previous studies documented significant behavioral changes in the offspring of cocaine-exposed mothers. We now explore the hypothesis that maternal cocaine exposure could alter the fetal epigenetic machinery sufficiently to cause lasting neurochemical and functional changes in the offspring. Pregnant CD1 mice were administered either saline or 20 mg/kg cocaine twice daily on gestational days 8-19. Male pups from each of ten litters of the cocaine and control groups were analyzed at 3 (P3) or 30 (P30) days postnatum. Global DNA methylation, methylated DNA immunoprecipitation followed by CGI(2) microarray profiling and bisulfite sequencing, as well as quantitative real-time RT-PCR gene expression analysis, were evaluated in hippocampal pyramidal neurons excised by laser capture microdissection. Following maternal cocaine exposure, global DNA methylation was significantly decreased at P3 and increased at P30. Among the 492 CGIs whose methylation was significantly altered by cocaine at P3, 34% were hypermethylated while 66% were hypomethylated. Several of these CGIs contained promoter regions for genes implicated in crucial cellular functions. Endogenous expression of selected genes linked to the abnormally methylated CGIs was correspondingly decreased or increased by as much as 4-19-fold. By P30, some of the cocaine-associated effects at P3 endured, reversed to opposite directions, or disappeared. Further, additional sets of abnormally methylated targets emerged at P30 that were not observed at P3. Taken together, these observations indicate that maternal cocaine exposure during the second and third trimesters of gestation could produce potentially profound structural and functional modifications in the epigenomic programs of neonatal and prepubertal mice

    Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients

    Full text link
    The delineation of dopamine dysfunction in the mentally ill has been a long-standing quest of biological psychiatry. The present study focuses on a recently recognized group of dopamine receptor- interacting proteins as possible novel sites of dysfunction in schizophrenic and bipolar patients. We demonstrate that the dorsolateral prefrontal cortex in schizophrenia and bipolar cases from the Stanley Foundation Neuropathology Consortium display significantly elevated levels of the D2 dopamine receptor desensitization regulatory protein, neuronal calcium sensor-1. These levels of neuronal calcium sensor-1 were not influenced by age, gender, hemisphere, cause of death, postmortem period, alcohol consumption, or antipsychotic and mood stabilizing medications. The present study supports the hypothesis that schizophrenia and bipolar disorder may be associated with abnormalities in dopamine receptor-interacting proteins

    D1 Dopamine Receptor Regulation of Microtubule-Associated Protein-2 Phosphorylation in Developing Cerebral Cortical Neurons

    Full text link
    This study addresses the hypothesis that the previously described capacity of D1 dopamine receptors (D1Rs) to regulate dendritic growth in developing cortical neurons may involve alterations in the phosphorylation state of microtubuleassociated protein-2 (MAP2). The changes in phosphorylation of this protein are known to affect its ability to stabilize the dendritic cytoskeleton. The study involved two systems: primary cultures of mouse cortical neurons grown in the presence of the D1R agonists, SKF82958 or A77636, and the cortex of neonatal transgenic mice overexpressing the D1A subtype of D1R. In both models, a decrease in dendritic extension corresponded with an elevation in MAP2 phosphorylation. This phosphorylation occurred on all three amino acid residues examined in this study: serine, threonine, and tyrosine. In cultured cortical neurons, D1R stimulation-induced increase in MAP2 phosphorylation was blocked by the protein kinase A (PKA) inhibitor, H-89, and mimicked by the PKA activator, Sp- cAMPS. This indicates that D1Rs modulate MAP2 phosphorylation through PKA-associated intracellular signaling pathways. We also observed that the elevations in MAP2 phosphorylation in neuronal cultures in the presence of D1R agonists (or Sp- cAMPS) were maintained for a prolonged time (up to at least 96 hr). Moreover, MAP2 phosphorylation underwent a substantial increase between 24 and 72 hr of exposure to these drugs. Our findings are consistent with the idea that D1Rs can modulate growth and maintenance of dendrites in developing cortical cells by regulating the phosphorylation of MAP2. In addition, our observations suggest that MAP2 phosphorylation by longterm activation of D1Rs (and PKA) can be divided into two phases the initial 24 hr long phase of a relatively weak elevation in phosphorylation and the delayed phase of a much more robust phosphorylation increase taking place during the next 48 hr

    Antidepressant stimulation of CDP-diacylglycerol synthesis does not require monoamine reuptake inhibition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies demonstrate that diverse antidepressant agents increase the cellular production of the nucleolipid CDP-diacylglycerol and its synthetic derivative, phosphatidylinositol, in depression-relevant brain regions. Pharmacological blockade of downstream phosphatidylinositide signaling disrupted the behavioral antidepressant effects in rats. However, the nucleolipid responses were resistant to inhibition by serotonin receptor antagonists, even though antidepressant-facilitated inositol phosphate accumulation was blocked. Could the neurochemical effects be additional to the known effects of the drugs on monoamine transmitter transporters? To examine this question, we tested selected agents in serotonin-depleted brain tissues, in PC12 cells devoid of serotonin transporters, and on the enzymatic activity of brain CDP-diacylglycerol synthase - the enzyme that catalyzes the physiological synthesis of CDP-diacylglycerol.</p> <p>Results</p> <p>Imipramine, paroxetine, and maprotiline concentration-dependently increased the levels of CDP-diacylglycerol and phosphatidylinositides in PC12 cells. Rat forebrain tissues depleted of serotonin by pretreatment with <it>p</it>-chlorophenylalanine showed responses to imipramine or maprotiline that were comparable to respective responses from saline-injected controls. With fluoxetine, nucleolipid responses in the serotonin-depleted cortex or hippocampus were significantly reduced, but not abolished. Each drug significantly increased the enzymatic activity of CDP-diacylglycerol synthase following incubations with cortical or hippocampal brain tissues.</p> <p>Conclusion</p> <p>Antidepressants probably induce the activity of CDP-diacylglycerol synthase leading to increased production of CDP-diacylglycerol and facilitation of downstream phosphatidylinositol synthesis. Phosphatidylinositol-dependent signaling cascades exert diverse salutary effects in neural cells, including facilitation of BDNF signaling and neurogenesis. Hence, the present findings should strengthen the notion that modulation of brain phosphatidylinositide signaling probably contributes to the molecular mechanism of diverse antidepressant medications.</p

    Dopamine in the dorsal hippocampus impairs the late-consolidation of cocaine-associated memory

    Get PDF
    Cocaine is thought to be addictive because it elevates dopamine levels in the striatum, reinforcing drug-seeking habits. Cocaine also elevates dopamine levels in the hippocampus, a structure involved in contextual conditioning as well as in reward function. Hippocampal dopamine promotes the late phase of consolidation of an aversive step-down avoidance memory. Here, we examined the role of hippocampal dopamine function in the persistence of the conditioned increase in preference for a cocaine-associated compartment. Blocking dorsal hippocampal D1-type receptors (D1Rs) but not D2-type receptors (D2Rs) 12 h after a single training trial extended persistence of the normally short-lived memory; conversely, a general and a specific phospholipase C-coupled D1R agonist (but not a D2R or adenylyl cyclase-coupled D1R agonist) decreased the persistence of the normally long-lived memory established by three-trial training. These effects of D1 agents were opposite to those previously established in a step-down avoidance task, and were here also found to be opposite to those in a lithium chloride-conditioned avoidance task. After returning to normal following cocaine injection, dopamine levels in the dorsal hippocampus were found elevated again at the time when dopamine antagonists and agonists were effective: between 13 and 17 h after cocaine injection. These findings confirm that, long after the making of a cocaine-place association, hippocampal activity modulates memory consolidation for that association via a dopamine-dependent mechanism. They suggest a dynamic role for dorsal hippocampal dopamine in this late-phase memory consolidation and, unexpectedly, differential roles for late consolidation of memories for places that induce approach or withdrawal because of a drug association.Fil: Kramar, Cecilia Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Chefer, Vladimir I.. National Institutes of Health; Estados UnidosFil: Wise, Roy A.. National Institutes of Health; Estados UnidosFil: Medina, Jorge Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; ArgentinaFil: Barbano, María Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentin
    corecore