2,495 research outputs found

    Building a cell and anatomy ontology of Caenorhabditis elegans

    Get PDF
    We are endowed with a rich knowledge about Caenorhabditis elegans. Its stereotyped anatomy and development has stimulated research and resulted in the accumulation of cell-based information concerning gene expression, and the role of specific cells in developmental signalling and behavioural circuits. To make the information more accessible to sophisticated queries and automated retrieval systems, WormBase has begun to construct a C. elegans cell and anatomy ontology. Here we present our strategies and progress

    Transmission of Renormalized Benzene Circuits

    Full text link
    The renormalization equations emerge from a Greenian-matrix solution of the discretized Schrodinger equation. A by-product of these equations is the decimation process, which enables substituted-benzenes to be mapped onto corresponding dimers, that are used to construct the series and parallel circuits of single-, double- and triple-dimers. The transmittivities of these circuits are calculated by the Lippmann-Schwinger theory, which yields the transmission-energy function T(E). The average value of T(E) provides a measure of the electron transport in the circuit in question. The undulating nature of the T(E) profiles give rise to resonances (T=1) and anti-resonances (T=0) across the energy spectrum. Analysis of the structure of the T(E) graphs highlights the distinguishing features associated with the homo- and hetero-geneous series and parallel circuits. Noteworthy results include the preponderance of p-dimers in circuits with high T(E) values, and the fact that parallel circuits tend to be better transmitters than their series counterparts.Comment: 32 pages, 14 figures, 1 tabl

    Science and Ethics

    Get PDF

    All for All

    Get PDF
    A review of Michael Ashburner's book Won for All: How the Drosophila Genome Was Sequenced

    Scientific responsibility and development

    Get PDF
    corecore