1,218 research outputs found

    Vertex covering with monochromatic pieces of few colours

    Full text link
    In 1995, Erd\H{o}s and Gy\'arf\'as proved that in every 22-colouring of the edges of KnK_n, there is a vertex cover by 2n2\sqrt{n} monochromatic paths of the same colour, which is optimal up to a constant factor. The main goal of this paper is to study the natural multi-colour generalization of this problem: given two positive integers r,sr,s, what is the smallest number pcr,s(Kn)\text{pc}_{r,s}(K_n) such that in every colouring of the edges of KnK_n with rr colours, there exists a vertex cover of KnK_n by pcr,s(Kn)\text{pc}_{r,s}(K_n) monochromatic paths using altogether at most ss different colours? For fixed integers r>sr>s and as nn\to\infty, we prove that pcr,s(Kn)=Θ(n1/χ)\text{pc}_{r,s}(K_n) = \Theta(n^{1/\chi}), where χ=max{1,2+2sr}\chi=\max{\{1,2+2s-r\}} is the chromatic number of the Kneser gr aph KG(r,rs)\text{KG}(r,r-s). More generally, if one replaces KnK_n by an arbitrary nn-vertex graph with fixed independence number α\alpha, then we have pcr,s(G)=O(n1/χ)\text{pc}_{r,s}(G) = O(n^{1/\chi}), where this time around χ\chi is the chromatic number of the Kneser hypergraph KG(α+1)(r,rs)\text{KG}^{(\alpha+1)}(r,r-s). This result is tight in the sense that there exist graphs with independence number α\alpha for which pcr,s(G)=Ω(n1/χ)\text{pc}_{r,s}(G) = \Omega(n^{1/\chi}). This is in sharp contrast to the case r=sr=s, where it follows from a result of S\'ark\"ozy (2012) that pcr,r(G)\text{pc}_{r,r}(G) depends only on rr and α\alpha, but not on the number of vertices. We obtain similar results for the situation where instead of using paths, one wants to cover a graph with bounded independence number by monochromatic cycles, or a complete graph by monochromatic dd-regular graphs

    Packing spanning graphs from separable families

    Full text link
    Let G\mathcal G be a separable family of graphs. Then for all positive constants ϵ\epsilon and Δ\Delta and for every sufficiently large integer nn, every sequence G1,,GtGG_1,\dotsc,G_t\in\mathcal G of graphs of order nn and maximum degree at most Δ\Delta such that e(G1)++e(Gt)(1ϵ)(n2)e(G_1)+\dotsb+e(G_t) \leq (1-\epsilon)\binom{n}{2} packs into KnK_n. This improves results of B\"ottcher, Hladk\'y, Piguet, and Taraz when G\mathcal G is the class of trees and of Messuti, R\"odl, and Schacht in the case of a general separable family. The result also implies approximate versions of the Oberwolfach problem and of the Tree Packing Conjecture of Gy\'arf\'as (1976) for the case that all trees have maximum degree at most Δ\Delta. The proof uses the local resilience of random graphs and a special multi-stage packing procedure

    Monochromatic cycle covers in random graphs

    Full text link
    A classic result of Erd\H{o}s, Gy\'arf\'as and Pyber states that for every coloring of the edges of KnK_n with rr colors, there is a cover of its vertex set by at most f(r)=O(r2logr)f(r) = O(r^2 \log r) vertex-disjoint monochromatic cycles. In particular, the minimum number of such covering cycles does not depend on the size of KnK_n but only on the number of colors. We initiate the study of this phenomena in the case where KnK_n is replaced by the random graph G(n,p)\mathcal G(n,p). Given a fixed integer rr and p=p(n)n1/r+εp =p(n) \ge n^{-1/r + \varepsilon}, we show that with high probability the random graph GG(n,p)G \sim \mathcal G(n,p) has the property that for every rr-coloring of the edges of GG, there is a collection of f(r)=O(r8logr)f'(r) = O(r^8 \log r) monochromatic cycles covering all the vertices of GG. Our bound on pp is close to optimal in the following sense: if p(logn/n)1/rp\ll (\log n/n)^{1/r}, then with high probability there are colorings of GG(n,p)G\sim\mathcal G(n,p) such that the number of monochromatic cycles needed to cover all vertices of GG grows with nn.Comment: 24 pages, 1 figure (minor changes, added figure
    corecore