1,026 research outputs found

    Euclid preparation: TBD. The pre-launch Science Ground Segment simulation framework

    No full text
    International audienceThe European Space Agency's Euclid mission is one of the upcoming generation of large-scale cosmology surveys, which will map the large-scale structure in the Universe with unprecedented precision. The development and validation of the SGS pipeline requires state-of-the-art simulations with a high level of complexity and accuracy that include subtle instrumental features not accounted for previously as well as faster algorithms for the large-scale production of the expected Euclid data products. In this paper, we present the Euclid SGS simulation framework as applied in a large-scale end-to-end simulation exercise named Science Challenge 8. Our simulation pipeline enables the swift production of detailed image simulations for the construction and validation of the Euclid mission during its qualification phase and will serve as a reference throughout operations. Our end-to-end simulation framework starts with the production of a large cosmological N-body & mock galaxy catalogue simulation. We perform a selection of galaxies down to I_E=26 and 28 mag, respectively, for a Euclid Wide Survey spanning 165 deg^2 and a 1 deg^2 Euclid Deep Survey. We build realistic stellar density catalogues containing Milky Way-like stars down to H<26. Using the latest instrumental models for both the Euclid instruments and spacecraft as well as Euclid-like observing sequences, we emulate with high fidelity Euclid satellite imaging throughout the mission's lifetime. We present the SC8 data set consisting of overlapping visible and near-infrared Euclid Wide Survey and Euclid Deep Survey imaging and low-resolution spectroscopy along with ground-based. This extensive data set enables end-to-end testing of the entire ground segment data reduction and science analysis pipeline as well as the Euclid mission infrastructure, paving the way to future scientific and technical developments and enhancements

    Euclid preparation: TBD. The pre-launch Science Ground Segment simulation framework

    No full text
    International audienceThe European Space Agency's Euclid mission is one of the upcoming generation of large-scale cosmology surveys, which will map the large-scale structure in the Universe with unprecedented precision. The development and validation of the SGS pipeline requires state-of-the-art simulations with a high level of complexity and accuracy that include subtle instrumental features not accounted for previously as well as faster algorithms for the large-scale production of the expected Euclid data products. In this paper, we present the Euclid SGS simulation framework as applied in a large-scale end-to-end simulation exercise named Science Challenge 8. Our simulation pipeline enables the swift production of detailed image simulations for the construction and validation of the Euclid mission during its qualification phase and will serve as a reference throughout operations. Our end-to-end simulation framework starts with the production of a large cosmological N-body & mock galaxy catalogue simulation. We perform a selection of galaxies down to I_E=26 and 28 mag, respectively, for a Euclid Wide Survey spanning 165 deg^2 and a 1 deg^2 Euclid Deep Survey. We build realistic stellar density catalogues containing Milky Way-like stars down to H<26. Using the latest instrumental models for both the Euclid instruments and spacecraft as well as Euclid-like observing sequences, we emulate with high fidelity Euclid satellite imaging throughout the mission's lifetime. We present the SC8 data set consisting of overlapping visible and near-infrared Euclid Wide Survey and Euclid Deep Survey imaging and low-resolution spectroscopy along with ground-based. This extensive data set enables end-to-end testing of the entire ground segment data reduction and science analysis pipeline as well as the Euclid mission infrastructure, paving the way to future scientific and technical developments and enhancements

    Euclid preparation: TBD. The pre-launch Science Ground Segment simulation framework

    No full text
    International audienceThe European Space Agency's Euclid mission is one of the upcoming generation of large-scale cosmology surveys, which will map the large-scale structure in the Universe with unprecedented precision. The development and validation of the SGS pipeline requires state-of-the-art simulations with a high level of complexity and accuracy that include subtle instrumental features not accounted for previously as well as faster algorithms for the large-scale production of the expected Euclid data products. In this paper, we present the Euclid SGS simulation framework as applied in a large-scale end-to-end simulation exercise named Science Challenge 8. Our simulation pipeline enables the swift production of detailed image simulations for the construction and validation of the Euclid mission during its qualification phase and will serve as a reference throughout operations. Our end-to-end simulation framework starts with the production of a large cosmological N-body & mock galaxy catalogue simulation. We perform a selection of galaxies down to I_E=26 and 28 mag, respectively, for a Euclid Wide Survey spanning 165 deg^2 and a 1 deg^2 Euclid Deep Survey. We build realistic stellar density catalogues containing Milky Way-like stars down to H<26. Using the latest instrumental models for both the Euclid instruments and spacecraft as well as Euclid-like observing sequences, we emulate with high fidelity Euclid satellite imaging throughout the mission's lifetime. We present the SC8 data set consisting of overlapping visible and near-infrared Euclid Wide Survey and Euclid Deep Survey imaging and low-resolution spectroscopy along with ground-based. This extensive data set enables end-to-end testing of the entire ground segment data reduction and science analysis pipeline as well as the Euclid mission infrastructure, paving the way to future scientific and technical developments and enhancements

    Euclid preparation: TBD. The pre-launch Science Ground Segment simulation framework

    No full text
    International audienceThe European Space Agency's Euclid mission is one of the upcoming generation of large-scale cosmology surveys, which will map the large-scale structure in the Universe with unprecedented precision. The development and validation of the SGS pipeline requires state-of-the-art simulations with a high level of complexity and accuracy that include subtle instrumental features not accounted for previously as well as faster algorithms for the large-scale production of the expected Euclid data products. In this paper, we present the Euclid SGS simulation framework as applied in a large-scale end-to-end simulation exercise named Science Challenge 8. Our simulation pipeline enables the swift production of detailed image simulations for the construction and validation of the Euclid mission during its qualification phase and will serve as a reference throughout operations. Our end-to-end simulation framework starts with the production of a large cosmological N-body & mock galaxy catalogue simulation. We perform a selection of galaxies down to I_E=26 and 28 mag, respectively, for a Euclid Wide Survey spanning 165 deg^2 and a 1 deg^2 Euclid Deep Survey. We build realistic stellar density catalogues containing Milky Way-like stars down to H<26. Using the latest instrumental models for both the Euclid instruments and spacecraft as well as Euclid-like observing sequences, we emulate with high fidelity Euclid satellite imaging throughout the mission's lifetime. We present the SC8 data set consisting of overlapping visible and near-infrared Euclid Wide Survey and Euclid Deep Survey imaging and low-resolution spectroscopy along with ground-based. This extensive data set enables end-to-end testing of the entire ground segment data reduction and science analysis pipeline as well as the Euclid mission infrastructure, paving the way to future scientific and technical developments and enhancements

    Hint for a TeV neutrino emission from the Galactic Ridge with ANTARES

    No full text
    International audienceInteractions of cosmic ray protons, atomic nuclei, and electrons in the interstellar medium in the inner part of the Milky Way produce a Îł\gamma-ray flux from the Galactic Ridge. If the Îł\gamma-ray emission is dominated by proton and nuclei interactions, a neutrino flux comparable to the Îł\gamma-ray flux is expected from the same sky region. Data collected by the ANTARES neutrino telescope are used to constrain the neutrino flux from the Galactic Ridge in the 1-100 TeV energy range. Neutrino events reconstructed both as tracks and showers are considered in the analysis and the selection is optimized for the search of an excess in the region ∣l∣<30deg⁥|l| < 30\deg, ∣b∣<2deg⁥|b| < 2\deg. The expected background in the search region is estimated using an off region with similar sky coverage. Neutrino signal originating from a power-law spectrum with slope ranging from ΓΜ=1\Gamma_\nu=1 to 44 is simulated in both channels. The observed energy distributions are fitted to constrain the neutrino emission from the Ridge. The energy distributions in the signal region are inconsistent with the background expectation at ∌96%\sim 96\% confidence level. The mild excess over the background is consistent with a neutrino flux with a power law with a slope 2.45−0.34+0.222.45^{+0.22}_{-0.34} and a flux normalization dNÎœ/dEÎœ=4.0−2.0+2.7×10−16GeV−1cm−2s−1sr−1dN_\nu/dE_\nu = 4.0^{+2.7}_{-2.0} \times 10^{-16} \text{GeV}^{-1} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1} at 40 TeV reference energy. Such flux is consistent with the expected neutrino signal if the bulk of the observed Îł\gamma-ray flux from the Galactic Ridge originates from interactions of cosmic ray protons and nuclei with a power-law spectrum extending well into the PeV energy range

    Euclid preparation. XXX. Evaluating the weak lensing cluster mass biases using the Three Hundred Project hydrodynamical simulations

    No full text
    International audienceThe photometric catalogue of galaxy clusters extracted from ESA Euclid data is expected to be very competitive for cosmological studies. Using state-of-the-art hydrodynamical simulations, we present systematic analyses simulating the expected weak lensing profiles from clusters in a variety of dynamic states and at wide range of redshifts. In order to derive cluster masses, we use a model consistent with the implementation within the Euclid Consortium of the dedicated processing function and find that, when jointly modelling mass and the concentration parameter of the Navarro-Frenk-White halo profile, the weak lensing masses tend to be, on average, biased low with respect to the true mass. Using a fixed value for the concentration, the mass bias is diminished along with its relative uncertainty. Simulating the weak lensing signal by projecting along the directions of the axes of the moment of inertia tensor ellipsoid, we find that orientation matters: when clusters are oriented along the major axis the lensing signal is boosted, and the recovered weak lensing mass is correspondingly overestimated. Typically, the weak lensing mass bias of individual clusters is modulated by the weak lensing signal-to-noise ratio, and the negative mass bias tends to be larger toward higher redshifts. However, when we use a fixed value of the concentration parameter the redshift evolution trend is reduced. These results provide a solid basis for the weak-lensing mass calibration required by the cosmological application of future cluster surveys from Euclid and Rubin

    Euclid preparation. TBD. The effect of linear redshift-space distortions in photometric galaxy clustering and its cross-correlation with cosmic shear

    No full text
    International audienceCosmological surveys planned for the current decade will provide us with unparalleled observations of the distribution of galaxies on cosmic scales, by means of which we can probe the underlying large-scale structure (LSS) of the Universe. This will allow us to test the concordance cosmological model and its extensions. However, precision pushes us to high levels of accuracy in the theoretical modelling of the LSS observables, in order not to introduce biases in the estimation of cosmological parameters. In particular, effects such as redshift-space distortions (RSD) can become relevant in the computation of harmonic-space power spectra even for the clustering of the photometrically selected galaxies, as it has been previously shown in literature studies. In this work, we investigate the contribution of linear RSD, as formulated in the Limber approximation by arXiv:1902.07226, in forecast cosmological analyses with the photometric galaxy sample of the Euclid survey, in order to assess their impact and quantify the bias on the measurement of cosmological parameters that neglecting such an effect would cause. We perform this task by producing mock power spectra for photometric galaxy clustering and weak lensing, as expected to be obtained from the Euclid survey. We then use a Markov chain Monte Carlo approach to obtain the posterior distributions of cosmological parameters from such simulated observations. We find that neglecting the linear RSD leads to significant biases both when using galaxy correlations alone and when these are combined with cosmic shear, in the so-called 3×\times2pt approach. Such biases can be as large as 5 σ5\,\sigma-equivalent when assuming an underlying Λ\LambdaCDM cosmology. When extending the cosmological model to include the equation-of-state parameters of dark energy, we find that the extension parameters can be shifted by more than 1 σ1\,\sigma

    Euclid preparation TBD. Modelling spectroscopic clustering on mildly nonlinear scales in beyond-Λ\LambdaCDM models

    No full text
    International audienceWe investigate the approximations needed to efficiently predict the large-scale clustering of matter and dark matter halos in beyond-Λ\LambdaCDM scenarios. We examine the normal branch of the Dvali-Gabadadze-Porrati model, the Hu-Sawicki f(R)f(R) model, a slowly evolving dark energy, an interacting dark energy model and massive neutrinos. For each, we test approximations for the perturbative kernel calculations, including the omission of screening terms and the use of perturbative kernels based on the Einstein-de Sitter universe; we explore different infrared-resummation schemes, tracer bias models and a linear treatment of massive neutrinos; we employ two models for redshift space distortions, the Taruya-Nishimishi-Saito prescription and the Effective Field Theory of Large-Scale Structure. This work further provides a preliminary validation of the codes being considered by Euclid for the spectroscopic clustering probe in beyond-Λ\LambdaCDM scenarios. We calculate and compare the χ2\chi^2 statistic to assess the different modelling choices. This is done by fitting the spectroscopic clustering predictions to measurements from numerical simulations and perturbation theory-based mock data. We compare the behaviour of this statistic in the beyond-Λ\LambdaCDM cases, as a function of the maximum scale included in the fit, to the baseline Λ\LambdaCDM case. We find that the Einstein-de Sitter approximation without screening is surprisingly accurate for all cases when comparing to the halo clustering monopole and quadrupole obtained from simulations. Our results suggest that the inclusion of multiple redshift bins, higher-order multipoles, higher-order clustering statistics (such as the bispectrum) and photometric probes such as weak lensing, will be essential to extract information on massive neutrinos, modified gravity and dark energy

    Euclid preparation. XXXI. The effect of the variations in photometric passbands on photometric-redshift accuracy

    Full text link
    The technique of photometric redshifts has become essential for the exploitation of multi-band extragalactic surveys. While the requirements on photo-zs for the study of galaxy evolution mostly pertain to the precision and to the fraction of outliers, the most stringent requirement in their use in cosmology is on the accuracy, with a level of bias at the sub-percent level for the Euclid cosmology mission. A separate, and challenging, calibration process is needed to control the bias at this level of accuracy. The bias in photo-zs has several distinct origins that may not always be easily overcome. We identify here one source of bias linked to the spatial or time variability of the passbands used to determine the photometric colours of galaxies. We first quantified the effect as observed on several well-known photometric cameras, and found in particular that, due to the properties of optical filters, the redshifts of off-axis sources are usually overestimated. We show using simple simulations that the detailed and complex changes in the shape can be mostly ignored and that it is sufficient to know the mean wavelength of the passbands of each photometric observation to correct almost exactly for this bias; the key point is that this mean wavelength is independent of the spectral energy distribution of the source}. We use this property to propose a correction that can be computationally efficiently implemented in some photo-z algorithms, in particular template-fitting. We verified that our algorithm, implemented in the new photo-z code Phosphoros, can effectively reduce the bias in photo-zs on real data using the CFHTLS T007 survey, with an average measured bias Delta z over the redshift range 0.4<z<0.7 decreasing by about 0.02, specifically from Delta z~0.04 to Delta z~0.02 around z=0.5. Our algorithm is also able to produce corrected photometry for other applications.Comment: 19 pages, 13 figures; Accepted for publication in A&

    Fast emulation of anisotropies induced in the cosmic microwave background by cosmic strings

    Full text link
    Cosmic strings are linear topological defects that may have been produced during symmetry-breaking phase transitions in the very early Universe. In an expanding Universe the existence of causally separate regions prevents such symmetries from being broken uniformly, with a network of cosmic string inevitably forming as a result. To faithfully generate observables of such processes requires computationally expensive numerical simulations, which prohibits many types of analyses. We propose a technique to instead rapidly emulate observables, thus circumventing simulation. Emulation is a form of generative modelling, often built upon a machine learning backbone. End-to-end emulation often fails due to high dimensionality and insufficient training data. Consequently, it is common to instead emulate a latent representation from which observables may readily be synthesised. Wavelet phase harmonics are an excellent latent representations for cosmological fields, both as a summary statistic and for emulation, since they do not require training and are highly sensitive to non-Gaussian information. Leveraging wavelet phase harmonics as a latent representation, we develop techniques to emulate string induced CMB anisotropies over a 7.2 degree field of view, with sub-arcminute resolution, in under a minute on a single GPU. Beyond generating high fidelity emulations, we provide a technique to ensure these observables are distributed correctly, providing a more representative ensemble of samples. The statistics of our emulations are commensurate with those calculated on comprehensive Nambu-Goto simulations. Our findings indicate these fast emulation approaches may be suitable for wide use in, e.g., simulation based inference pipelines. We make our code available to the community so that researchers may rapidly emulate cosmic string induced CMB anisotropies for their own analysis
    • 

    corecore