6 research outputs found

    Association of Under-Approximation Techniques for Generating Tests from Models

    No full text
    International audienceIn this paper we present a Model-Based Testing approach with which we generate tests from an abstraction of a source behavioural model. We show a new algorithm that computes the abstraction as an under-approximation of the source model. Our first contribution is to combine two previous approaches proposed by Ball and Pasareanu et al. to compute May, Must+ and Must- abstract transition relations. Prooftechniques are used to compute these transition relations. The tests obtained by covering the abstract transitions have to be instantiated from the source model. So, following Pasareanu et al., our algorithm additionally computes a concrete transition relation: the tests obtained as sequences of concrete transitions need not be instantiated from the source model. Another contribution is to propose a choice of relevant paramaters and heuristics to pilot the tests computation. We experiment our approach and compare it with a previous approach of ours to compute tests from an abstraction that over-approximates the source model

    The use of molecular dynamics simulations in QSAR studies of pyrethoid insecticides

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX186449 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    High Level System Design and Analysis using Abstract State Machines

    No full text
    We provide an introduction to a practical method for rigorous system development which has been used successfully, under industrial constraints, for design and analysis of complex hardware/software systems. The method allows one to start system development with a trustworthy high level system specification and to link such a "ground model" in a well documented and inspectable way through intermediate design steps to its implementation. The method enhances traditional operational modelling and analysis techniques by incorporating the most general abstraction, decomposition and re nement mechanisms which have become available through Gurevich's Abstract State Machines. Through its versatility the ASM approach is non-monolithic and integratable at any development level into current design and analysis environments. We also collect experimental evidence for the ASM thesis, a generalization of Turing's thesis

    Bibliography

    No full text
    corecore