3,324 research outputs found

    Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains

    Full text link
    Existing approaches for multivariate functional principal component analysis are restricted to data on the same one-dimensional interval. The presented approach focuses on multivariate functional data on different domains that may differ in dimension, e.g. functions and images. The theoretical basis for multivariate functional principal component analysis is given in terms of a Karhunen-Lo\`eve Theorem. For the practically relevant case of a finite Karhunen-Lo\`eve representation, a relationship between univariate and multivariate functional principal component analysis is established. This offers an estimation strategy to calculate multivariate functional principal components and scores based on their univariate counterparts. For the resulting estimators, asymptotic results are derived. The approach can be extended to finite univariate expansions in general, not necessarily orthonormal bases. It is also applicable for sparse functional data or data with measurement error. A flexible R-implementation is available on CRAN. The new method is shown to be competitive to existing approaches for data observed on a common one-dimensional domain. The motivating application is a neuroimaging study, where the goal is to explore how longitudinal trajectories of a neuropsychological test score covary with FDG-PET brain scans at baseline. Supplementary material, including detailed proofs, additional simulation results and software is available online.Comment: Revised Version. R-Code for the online appendix is available in the .zip file associated with this article in subdirectory "/Software". The software associated with this article is available on CRAN (packages funData and MFPCA

    Tree-valued Feller diffusion

    Full text link
    We consider the evolution of the genealogy of the population currently alive in a Feller branching diffusion model. In contrast to the approach via labeled trees in the continuum random tree world, the genealogies are modeled as equivalence classes of ultrametric measure spaces, the elements of the space U\mathbb{U}. This space is Polish and has a rich semigroup structure for the genealogy. We focus on the evolution of the genealogy in time and the large time asymptotics conditioned both on survival up to present time and on survival forever. We prove existence, uniqueness and Feller property of solutions of the martingale problem for this genealogy valued, i.e., U\mathbb{U}-valued Feller diffusion. We give the precise relation to the time-inhomogeneous U1\mathbb{U}_1-valued Fleming-Viot process. The uniqueness is shown via Feynman-Kac duality with the distance matrix augmented Kingman coalescent. Using a semigroup operation on U\mathbb{U}, called concatenation, together with the branching property we obtain a L{\'e}vy-Khintchine formula for U\mathbb{U}-valued Feller diffusion and we determine explicitly the L{\'e}vy measure on U{0}\mathbb{U}\setminus\{0\}. From this we obtain for h>0h>0 the decomposition into depth-hh subfamilies, a representation of the process as concatenation of a Cox point process of genealogies of single ancestor subfamilies. Furthermore, we will identify the U\mathbb{U}-valued process conditioned to survive until a finite time TT. We study long time asymptotics, such as generalized quasi-equilibrium and Kolmogorov-Yaglom limit law on the level of ultrametric measure spaces. We also obtain various representations of the long time limits.Comment: 93 pages, replaced by revised versio

    Generalized Functional Additive Mixed Models

    Full text link
    We propose a comprehensive framework for additive regression models for non-Gaussian functional responses, allowing for multiple (partially) nested or crossed functional random effects with flexible correlation structures for, e.g., spatial, temporal, or longitudinal functional data as well as linear and nonlinear effects of functional and scalar covariates that may vary smoothly over the index of the functional response. Our implementation handles functional responses from any exponential family distribution as well as many others like Beta- or scaled non-central tt-distributions. Development is motivated by and evaluated on an application to large-scale longitudinal feeding records of pigs. Results in extensive simulation studies as well as replications of two previously published simulation studies for generalized functional mixed models demonstrate the good performance of our proposal. The approach is implemented in well-documented open source software in the "pffr()" function in R-package "refund"

    Restricted Likelihood Ratio Testing in Linear Mixed Models with General Error Covariance Structure

    Get PDF
    We consider the problem of testing for zero variance components in linear mixed models with correlated or heteroscedastic errors. In the case of independent and identically distributed errors, a valid test exists, which is based on the exact finite sample distribution of the restricted likelihood ratio test statistic under the null hypothesis. We propose to make use of a transformation to derive the (approximate) test distribution for the restricted likelihood ratio test statistic in the case of a general error covariance structure. The proposed test proves its value in simulations and is finally applied to an interesting question in the field of well-being economics
    corecore