2,683 research outputs found

    A Cellular Automaton Model for Diffusive and Dissipative Systems

    Get PDF
    We study a cellular automaton model, which allows diffusion of energy (or equivalently any other physical quantities such as mass of a particular compound) at every lattice site after each timestep. Unit amount of energy is randomly added onto a site. Whenever the local energy content of a site reaches a fixed threshold Ec1E_{c1}, energy will be dissipated. Dissipation of energy propagates to the neighboring sites provided that the energy contents of those sites are greater than or equal to another fixed threshold Ec2(Ec1)E_{c2} (\leq E_{c1}). Under such dynamics, the system evolves into three different types of states depending on the values of Ec1E_{c1} and Ec2E_{c2} as reflected in their dissipation size distributions, namely: localized peaks, power laws, or exponential laws. This model is able to describe the behaviors of various physical systems including the statistics of burst sizes and burst rates in type-I X-ray bursters. Comparisons between our model and the famous forest-fire model (FFM) are made.Comment: in REVTEX 3.0. Figures available on request. Extensively revised. Accepted by Phys.Rev.

    d_c=4 is the upper critical dimension for the Bak-Sneppen model

    Full text link
    Numerical results are presented indicating d_c=4 as the upper critical dimension for the Bak-Sneppen evolution model. This finding agrees with previous theoretical arguments, but contradicts a recent Letter [Phys. Rev. Lett. 80, 5746-5749 (1998)] that placed d_c as high as d=8. In particular, we find that avalanches are compact for all dimensions d<=4, and are fractal for d>4. Under those conditions, scaling arguments predict a d_c=4, where hyperscaling relations hold for d<=4. Other properties of avalanches, studied for 1<=d<=6, corroborate this result. To this end, an improved numerical algorithm is presented that is based on the equivalent branching process.Comment: 4 pages, RevTex4, as to appear in Phys. Rev. Lett., related papers available at http://userwww.service.emory.edu/~sboettc

    Condensation of Tubular D2-branes in Magnetic Field Background

    Full text link
    It is known that in the Minkowski vacuum a bunch of IIA superstrings with D0-branes can be blown-up to a supersymmetric tubular D2-brane, which is supported against collapse by the angular momentum generated by crossed electric and magnetic Born-Infeld (BI) fields. In this paper we show how the multiple, smaller tubes with relative angular momentum could condense to a single, larger tube to stabilize the system. Such a phenomena could also be shown in the systems under the Melvin magnetic tube or uniform magnetic field background. However, depending on the magnitude of field strength, a tube in the uniform magnetic field background may split into multiple, smaller tubes with relative angular momentum to stabilize the system.Comment: Latex 10 pages, mention the dynamical joining of the tubes, modify figure

    Dynamics of the DBI Spike Soliton

    Get PDF
    We compare oscillations of a fundamental string ending on a D3-brane in two different settings: (1) a test-string radially threading the horizon of an extremal black D3-brane and (2) the spike soliton of the DBI effective action for a D3-brane. Previous work has shown that overall transverse modes of the test-string appear as l=0 modes of the transverse scalar fields of the DBI system. We identify DBI world-volume degrees of freedom that have dynamics matching those of the test-string relative transverse modes. We show that there is a map, resembling T-duality, between relative and overall transverse modes for the test-string that interchanges Neumann and Dirichlet boundary conditions and implies equality of the absorption coefficients for both modes. We give general solutions to the overall and relative transverse parts of the DBI coupled gauge and scalar system and calculate absorption coefficients for the higher angular momentum modes in the low frequency limit. We find that there is a nonzero amplitude for l>0 modes to travel out to infinity along the spike, demonstrating that the spike remains effectively 3+1-dimensional.Comment: 15 pages, 1 figur

    Noise induced state transitions, intermittency and universality in the noisy Kuramoto-Sivashinsky equation

    Get PDF
    We analyze the effect of pure additive noise on the long-time dynamics of the noisy Kuramoto-Sivashinsky (KS) equation in a regime close to the instability onset. We show that when the noise is highly degenerate, in the sense that it acts only on the first stable mode, the solution of the KS equation undergoes several transitions between different states, including a critical on-off intermittent state that is eventually stabilized as the noise strength is increased. Such noise-induced transitions can be completely characterized through critical exponents, obtaining that both the KS and the noisy Burgers equation belong to the same universality class. The results of our numerical investigations are explained rigorously using multiscale techniques.Comment: 4 pages, 4 figure

    Radiation Damping of a BPS Monopole; an Implication to S-duality

    Get PDF
    The radiation reaction of a BPS monopole in the presence of incident electromagnetic waves as well as massless Higgs waves is analyzed classically. The reactive forces are compared to those of WW boson that is interpreted as a dual partner of the BPS monopole. It is shown that the damping of acceleration is dual to each other, while in the case of finite size effects the duality is broken explicitly. Their implications on the duality are discussed.Comment: 20 pages, uses revtex, changes in reference

    Perturbative Analysis of Nonabelian Aharonov-Bohm Scattering

    Full text link
    We perform a perturbative analysis of the nonabelian Aharonov-Bohm problem to one loop in a field theoretic framework, and show the necessity of contact interactions for renormalizability of perturbation theory. Moreover at critical values of the contact interaction strength the theory is finite and preserves classical conformal invariance.Comment: 12 pages in LaTeX, uses epsf.sty, 5 uuencoded Postscript figures sent separately. MIT-CTP-228

    Dynamics of BPS States in the Dirac-Born-Infeld Theory

    Get PDF
    The Dirac-Born-Infeld action with transverse scalar fields is considered to study the dynamics of various BPS states. We first describe the characteristic properties of the so-called 1/2 and 1/4 BPS states on the D3 brane, which can be interpreted as F/D-strings ending on a D3-brane in Type IIB string theory picture. We then study the response of the BPS states to low energy excitations of massless fields on the brane, the scalar fields representing the shape fluctuation of the brane and U(1) gauge fields describing the open string excitations on the D-brane. This leads to an identification of interactions between BPS states including the static potentials and the kinetic interactions.Comment: 19 pages, 4 figures References added, Typographical errors are correcte

    Sierpinski signal generates 1/fα1/f^\alpha spectra

    Full text link
    We investigate the row sum of the binary pattern generated by the Sierpinski automaton: Interpreted as a time series we calculate the power spectrum of this Sierpinski signal analytically and obtain a unique rugged fine structure with underlying power law decay with an exponent of approximately 1.15. Despite the simplicity of the model, it can serve as a model for 1/fα1/f^\alpha spectra in a certain class of experimental and natural systems like catalytic reactions and mollusc patterns.Comment: 4 pages (4 figs included). Accepted for publication in Physical Review

    Self-organized critical neural networks

    Full text link
    A mechanism for self-organization of the degree of connectivity in model neural networks is studied. Network connectivity is regulated locally on the basis of an order parameter of the global dynamics which is estimated from an observable at the single synapse level. This principle is studied in a two-dimensional neural network with randomly wired asymmetric weights. In this class of networks, network connectivity is closely related to a phase transition between ordered and disordered dynamics. A slow topology change is imposed on the network through a local rewiring rule motivated by activity-dependent synaptic development: Neighbor neurons whose activity is correlated, on average develop a new connection while uncorrelated neighbors tend to disconnect. As a result, robust self-organization of the network towards the order disorder transition occurs. Convergence is independent of initial conditions, robust against thermal noise, and does not require fine tuning of parameters.Comment: 5 pages RevTeX, 7 figures PostScrip
    corecore